【題目】請(qǐng)利用直尺和圓規(guī)完成以下問題. (要求:保留作圖痕跡,補(bǔ)全作法)如圖:在直線MN上求作一點(diǎn)P,使點(diǎn)P到射線OA和OB的距離相等.
作法:(1) 以點(diǎn)O為圓心,適當(dāng)長為半徑 ,交OA于點(diǎn)C,交OB于點(diǎn)D.
(2) 分別以點(diǎn)C、D為圓心, CD的長為 畫弧,兩弧在∠AOB的 相交于點(diǎn)Q.
(3) 畫射線OQ,射線OQ與直線MN相交于點(diǎn)P,P點(diǎn)即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)圖(1)所示的程序,得到了y與x的函數(shù)圖象如圖(2),過y軸上一點(diǎn)M作PQ∥x軸交圖象于點(diǎn)P,Q,連接OP,OQ.則以下結(jié)論:①當(dāng)x<0時(shí),y=;②△OPQ的面積為定值;③當(dāng)x>0時(shí),y的值隨x值的增大而增大;④MQ=2PM;⑤∠POQ可以等于90°.其中正確的結(jié)論是( )
A. ①②④ B. ②④⑤ C. ③④⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=∠BCD=90°,點(diǎn)E在BC邊上,∠AED=90°
(1)求證:∠BAE=∠CED;(2)若AB+CD=DE,求證:AE+BE=CE
(3)在(2)的條件下,若△CDE與△ABE的面積的差為18,CD=6,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)庫存若干套桌椅,準(zhǔn)備修理后支援貧困山區(qū)學(xué)!,F(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲單獨(dú)修完這些桌椅比乙單獨(dú)修完多用20天,學(xué)校每天付甲組80元修理費(fèi),付乙組120元修理費(fèi)。
(1)該中學(xué)庫存多少套桌椅?
(2)在修理過程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天10元生活補(bǔ)助費(fèi),現(xiàn)有三種修理方案:a、由甲單獨(dú)修理;b、由乙單獨(dú)修理;c、甲、乙合作同時(shí)修理。你認(rèn)為哪種方案省時(shí)又省錢?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】窗戶的形狀如圖所示(圖中長度單位:cm),其中上部是半圓形,下部是邊長相同的四個(gè)小正方形. 已知下部小正方形的邊長是acm.
(1)計(jì)算窗戶的面積(計(jì)算結(jié)果保留π).
(2)計(jì)算窗戶的外框的總長(計(jì)算結(jié)果保留π).
(3)安裝一種普通合金材料的窗戶單價(jià)是175元/平方米,當(dāng)a=50cm時(shí),請(qǐng)你幫助計(jì)算這個(gè)窗戶安裝這種材料的費(fèi)用(π≈3.14,窗戶面積精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長方形的邊在數(shù)軸上,為原點(diǎn),長方形的面積為12,邊的長為3
(1)數(shù)軸上點(diǎn)表示的數(shù)為
(2)將長方形沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的長方形記為,設(shè)長方形移動(dòng)的距離為,移動(dòng)后的長方形與原長方形重疊部分的面積記為
①當(dāng)等于原長方形面積的時(shí),則點(diǎn)的移動(dòng)距離 ,此時(shí)數(shù)軸上點(diǎn)表示的數(shù)為
②為線段的中點(diǎn),點(diǎn)在線段上,且當(dāng)點(diǎn)所表示的數(shù)互為相反數(shù)時(shí),則的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE與AD相交于點(diǎn)F,∠EDF=38°,則∠DBE的度數(shù)是( )
A. 25° B. 26° C. 27° D. 38°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC 中,∠BAC=90°,AB=AC,過 A 任作一直線 l,作 BD⊥l于 D,CE⊥l于 E,觀察三條線段 BD,CE,DE 之間的數(shù)量關(guān)系.
(1)如圖 1,當(dāng) l 經(jīng)過 BC 中點(diǎn)時(shí),此時(shí) BD CE;
(2)如圖 2,當(dāng) l 不與線段 BC 相交時(shí),BD,CE,DE 三者的數(shù)量關(guān)系為 ,并證明 你的結(jié)論.
(3 )如圖 3 ,當(dāng) l 與線段 BC 相交,交點(diǎn)靠近 B 點(diǎn)時(shí),BD ,CE ,DE 三者的數(shù)量關(guān)系 為 .證明你的結(jié)論,并畫圖直接寫出交點(diǎn)靠近 C 點(diǎn)時(shí),BD,CE,DE 三者的數(shù)最關(guān) 系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, ⊙O的半徑是1,直線AB與x軸交于點(diǎn)P(x,0),且與x軸的正半軸夾角為45°,若直線AB與⊙O有公共點(diǎn),則x值的范圍是( )
A. -1≤x≤1 B. -≤x≤ C. -<x< D. 0≤x≤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com