【題目】小明和爸爸周末到濕地公園進行鍛煉,兩人同時從家出發(fā),勻速騎共享單車到達公園入口,然后一同勻速步行到達驛站,到達驛站后小明的爸爸立即又騎共享單車按照來時騎行速度原路返回,在公園入口處改為步行,并按來時步行速度原路回家,小明到達驛站后逗留了10分鐘之后騎車回家,爸爸在鍛煉過程中離出發(fā)地的路程與出發(fā)的時間的函數(shù)關(guān)系如圖.

(1)圖中m_____,n_____;(直接寫出結(jié)果)

(2)小明若要在爸爸到家之前趕上,問小明回家騎行速度至少是多少?

【答案】(1)25,45;(2)小明回家騎行速度至少是0.3千米/分.

【解析】

(1)根據(jù)函數(shù)圖象,先求出爸爸騎共享單車的速度以及勻速步行的速度,再求出返回途中爸爸從驛站到公園入口的時間,得到m的值;然后求出爸爸從公園入口到家的時間,進而得到n的值;

(2)根據(jù)小明要在爸爸到家之前趕上得到不等關(guān)系:(n﹣爸爸從驛站到家的時間﹣小明到達驛站后逗留的10分鐘小明回家騎行的速度驛站與家的距離,依此列出不等式,求解即可.

(1)由題意,可得爸爸騎共享單車的速度為:0.2(千米/),

爸爸勻速步行的速度為:0.1(千米/),

返回途中爸爸從驛站到公園入口的時間為:5(分鐘),

所以m20+525;

爸爸從公園入口到家的時間為:20(分鐘)

所以n25+2045

故答案為25,45

(2)設(shè)小明回家騎行速度是x千米/分,

根據(jù)題意,得(452510)x≥3,

解得x≥0.3

答:小明回家騎行速度至少是0.3千米/分.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,ABC是邊長3cm的等邊三角形.動點P1cm/s的速度從點A出發(fā),沿線段AB向點B運動.

(1)如圖1,設(shè)點P的運動時間為ts),那么t   s)時,PBC是直角三角形;

(2)如圖2,若另一動點Q從點B出發(fā),沿線段BC向點C運動,如果動點P、Q都以1cm/s的速度同時出發(fā).設(shè)運動時間為ts),那么t為何值時,PBQ是直角三角形?

(3)如圖3,若另一動點Q從點C出發(fā),沿射線BC方向運動.連接PQACD.如果動點P、Q都以1cm/s的速度同時出發(fā).設(shè)運動時間為ts),那么t為何值時,DCQ是等腰三角形?

(4)如圖4,若另一動點Q從點C出發(fā),沿射線BC方向運動.連接PQACD,連接PC.如果動點P、Q都以1cm/s的速度同時出發(fā).請你猜想:在點P、Q的運動過程中,PCDQCD的面積有什么關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知 a b , a b 兩個數(shù)在數(shù)軸上對應的點分別為點 A 、點 B ,求 A 、 B 兩點之間的距離.

(探索)

小明利用絕對值的概念,結(jié)合數(shù)軸,進行探索:

1)補全小明的探索

(應用)

2)若點C 對應的數(shù)c ,數(shù)軸上點C AB 兩點的距離相等,求c .(用含a、b 的代數(shù)式表示)

3)若點 D對應的數(shù) d ,數(shù)軸上點 D A 的距離是點 D B 的距離的nn 0 倍,請?zhí)剿?/span> n 的取值范圍與點 D 個數(shù)的關(guān)系,并直接寫出a、b 、d、n 的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.

(1)求每臺A型電腦和B型電腦的銷售利潤;

(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

(3)實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,等邊三角形ABC中,D、E分別是BC、AC上的點,且AE=CD,

1)求證:AD=BE

2)求:∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,對角線ACAB、AD的夾角分別為α、β,點EAC上任意一點,給出如下結(jié)論:①AB sinα=AD sinβ;SABE=SADE;ADsinα=AB sinβ. 其中正確的個數(shù)有( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】類比學習:一動點沿著數(shù)軸向右平移3個單位,再向左平移個單位,相當于向右平移1個單位.用實數(shù)加法表示為

若坐標平面上的點作如下平移:沿軸方向平移的數(shù)量為(向右為正,向左為負,平移個單位),沿軸方向平移的數(shù)量為(向上為正,向下為負,平移個單位),則把有序數(shù)對{,}叫做這一平移的“平移量”;“平移量”{,}與“平移量”{,}的加法運算法則為

解決問題:(1)計算:{3,1}+{1,2}{1,2}+{3,1}

2動點P從坐標原點O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”{12}平移到B;若先把動點P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置還是點B嗎?在圖中畫出四邊形OABC.

證明四邊形OABC是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10袋小麥稱重后記錄如下(單位:kg).88.8,91,91.589,91.291.3,88.9,91.291,91.1

(1)如果每袋小麥以90 kg為標準,超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負數(shù),這10袋小麥總計超過多少千克或不足多少千克?

(2)10袋小麥一共多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】523、24日,蘭州市九年級學生進行了中考體育測試,某校抽取了部分學生的一分鐘跳繩測試成績,將測試成績整理后作出如統(tǒng)計圖.甲同學計算出前兩組的頻率和是012,乙同學計算出第一組的頻率為0.04,丙同學計算出從左至右第二、三、四組的頻數(shù)比為41715.結(jié)合統(tǒng)計圖回答下列問題:

(1)這次共抽取了多少名學生的一分鐘跳繩測試成績?

(2)若跳繩次數(shù)不少于130次為優(yōu)秀,則這次測試成績的優(yōu)秀率是多少?

(3)如果這次測試成績中的中位數(shù)是120次,那么這次測試中,成績?yōu)?/span>120次的學生至少有多少人?

查看答案和解析>>

同步練習冊答案