【題目】如圖,點(diǎn)A和點(diǎn)B分別在x軸和y軸上,且OAOB4,直線BCx軸于點(diǎn)C,SBOCSABC

1)求直線BC的解析式;

2)在直線BC上求作一點(diǎn)P,使四邊形OBAP為平行四邊形(尺規(guī)作圖,保留痕跡,不寫作法).

【答案】1;2)見解析.

【解析】

1)根據(jù)三角形面積公式得到OC=AC= OA=2,則C2,0),然后利用待定系數(shù)法求直線BC的解析式;

2)當(dāng)APx軸時(shí),APOB,利用OC=AC可得到AP=OB,根據(jù)平行四邊形的判定方法可得到四邊形OBAP為平行四邊形,于是過(guò)點(diǎn)Ax軸的垂線交直線BCP即可.

1)依題意,A4,0),B0,4),

因?yàn)?/span>SBOCSABC,所以,COA中點(diǎn),所以,C2,0),

設(shè)直線BC的解析式為:,則有

,所以,k=-2,b4,

直線BC的解析式為:

2)過(guò)點(diǎn)AAP垂直x軸,交BC的延長(zhǎng)線于P,連結(jié)OP,點(diǎn)P為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是關(guān)于的方程的一個(gè)實(shí)數(shù)根,并且這個(gè)方程的兩個(gè)實(shí)數(shù)根恰好是等腰三角形的兩條邊長(zhǎng),則的周長(zhǎng)為(

A. 6 B. 8 C. 10 D. 8或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1、2、3、4的小球,它們的形狀、大小、質(zhì)地等完全相同.小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)抽取一個(gè)小球,記下數(shù)字為y.則小明、小華各取一次小球所確定的數(shù)x,y滿足y<的概率是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,,點(diǎn),分別在直線,上,,過(guò)點(diǎn)的延長(zhǎng)線交于點(diǎn),交于點(diǎn),平分,交于點(diǎn),交于點(diǎn)

1)直接寫出,,之間的關(guān)系:

___________=____________+___________

2)若,求

3)如圖2,在(2)的條件下,將繞著點(diǎn)以每秒的速度逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)時(shí)間為,當(dāng)邊與射線重合時(shí)停止,則在旋轉(zhuǎn)過(guò)程中,當(dāng)的其中一邊與的某一邊平行時(shí),直接寫出此時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由線段a,b,c組成的三角形不是直角三角形的是( 。

A. a=15b=8,c=17 B. a=12,b=14c=15

C. a=,b=4,c=5 D. a=7,b=24c=25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為準(zhǔn)備母親節(jié)禮物,同學(xué)們委托小明用其支付寶余額團(tuán)購(gòu)鮮花或禮盒.每束鮮花的售價(jià)相同,每份禮盒的售價(jià)也相同.若團(tuán)購(gòu)15束鮮花和18份禮盒,余額差80元;若團(tuán)購(gòu)18束鮮花和15份禮盒,余額剩70元.若團(tuán)購(gòu)19束鮮花和14份禮盒,則支付寶余額剩_______元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(/千克,且10≤x≤18)之間的函數(shù)關(guān)系如圖所示,該經(jīng)銷商想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為多少?列出關(guān)于x的方程是__________________.(不需化簡(jiǎn)和解方程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一天課間,頑皮的小明同學(xué)拿著老師的等腰直角三角板(AC=BC,∠ACB=90°)玩,不小心掉到兩根直立于地面的柱子(∠ADC=BEC=90°)之間,如圖所示,這一幕恰巧被數(shù)學(xué)老師看見了,于是有了下面這道題.

1)求證:ADC≌△CEB;

2)如果每塊磚的厚度a10cm,請(qǐng)你幫小明求出三角板ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ACB90°,BC3cmCDAB,垂足為點(diǎn)D.在AC上取一點(diǎn)E,使ECBC,過(guò)點(diǎn)EEFACCD的延長(zhǎng)線于點(diǎn)F,若EF7cm,則AE長(zhǎng)為(

A.1cmB.2 cmC.3cmD.4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案