【題目】若關(guān)于x的一元二次方程 x2+ x+tana=0有兩個相等的實數(shù)根,則銳角a等于( )
A.15°
B.30°
C.45°
D.60°
【答案】D
【解析】解:∵方程 x2+ x+tana=0有兩個相等的實數(shù)根, ∴△=3﹣4× tana=0,
解得:tana= ,
則銳角a等于60°,
故選:D.
【考點精析】關(guān)于本題考查的求根公式和特殊角的三角函數(shù)值,需要了解根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根;分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)證明:k∈R,直線y=g(x)都不是曲線y=f(x)的切線;
(2)若x∈[e,e2],使得f(x)≤g(x)+ 成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣3,﹣1, ,1,3這五個數(shù)中,隨機抽取一個數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 ﹣ =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是( 。
A.﹣3
B.﹣2
C.﹣
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在關(guān)于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實數(shù),方程①的根為非負數(shù).
(1)求k的取值范圍;
(2)當方程②有兩個整數(shù)根x1、x2 , k為整數(shù),且k=m+2,n=1時,求方程②的整數(shù)根;
(3)當方程②有兩個實數(shù)根x1、x2 , 滿足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負整數(shù)時,試判斷|m|≤2是否成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某運動員在一場籃球比賽中的技術(shù)統(tǒng)計如表所示:
技術(shù) | 上場時間(分鐘) | 出手投籃(次) | 投中 | 罰球得分 | 籃板 | 助攻(次) | 個人總得分 |
數(shù)據(jù) | 46 | 66 | 22 | 10 | 11 | 8 | 60 |
注:表中出手投籃次數(shù)和投中次數(shù)均不包括罰球.
根據(jù)以上信息,求本場比賽中該運動員投中2分球和3分球各幾個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,線段AB經(jīng)過平移得到線段A′B′,其中點A,B的對應點分別為點A′,B′,這四個點都在格點上,則這四個點組成的四邊形ABB′A′的面積是( )
A.4
B.6
C.9
D.13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路的同側(cè)依次排列著A,C,B三個村莊,某天甲、乙兩車分別從A,B兩地出發(fā),沿這條公路勻速行駛至C地停止,從甲車出發(fā)至甲車到達C地的過程,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.求:
(1)甲的速度是 , 乙的速度是;
(2)分別求出甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系式,并寫出取值范圍;
(3)若甲、乙兩車到C地后繼續(xù)沿該公路原速度行駛,求甲車出發(fā)多少小時,兩車相距350km.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當點H與點A重合時,EF=2 .
以上結(jié)論中,你認為正確的有 . (填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在Rt△ACB中,C為直角頂點,∠ABC=25°,O為斜邊中點.將OA繞著點O逆時針旋轉(zhuǎn)θ°(0<θ<180)至OP,當△BCP恰為軸對稱圖形時,θ的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com