【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A23),B-3n)兩點.

1)求一次函數(shù)與反比例函數(shù)的表達式;

2)根據(jù)所給條件,請直接寫出不等式<的解集;

3)過點BBCx軸,垂足為C,求SABC

【答案】(1);一次函數(shù)解析式為:y=x+1;2x<-30<x<2;(35.

【解析】試題分析:(1)利用待定系數(shù)法求函數(shù)的解析式;

(2)根據(jù)圖象得出不等式的解集;

(3)以BC為底邊,高為A、B兩點的橫坐標的絕對值的和,代入面積公式計算即可.

試題解析:1)∵點A2,3)在y=的圖象上,

∴m=6,

∴反比例函數(shù)的解析式為:y=,

∵B(-3,n)在反比例函數(shù)圖象上,

n=

∵A(2,3),B(-3,-2)兩點在直線y=kx+b上,

解得: ,

∴一次函數(shù)的解析式為:y=x+1;

(2)由圖象得:x<-30<x<2,

故答案為:x<-30<x<2;

(3)以BC為底邊,則BC邊上的高為:|-3|+2=5,

SABC=×2×5=5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖直線Lx軸、y軸分別交于點B、A兩點,且A、B兩點的坐標分別為A0,3),B(-4,0).

1)請求出直線L的函數(shù)解析式;

2)點P在坐標軸上,且△ABP的面積為12,求點P的坐標;

3)點C為直線AB上一個動點,是否存在使點Cx軸的距離為1.5若存在請直接寫出該點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,王華同學在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行12m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部.已知王華同學的身高是1.6m,兩個路燈的高度都是9.6m.

(1)求兩個路燈之間的距離;

(2)當王華同學走到路燈BD處時,他在路燈AC下的影子長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作題

1)如圖①所示是一個長為2a,寬為2b的矩形,若把此圖沿圖中虛線用剪刀均分為四塊小長方形,然后按圖②的形狀拼成一個正方形,請問:這兩個圖形的 不變.圖②中陰影部分的面積用含a、b的代數(shù)式表示為_________________

2)由(1)的探索中,可得到的結論是:在周長一定的矩形中,___________時,面積最大;

3)若一矩形的周長為36 cm,則當邊長為多少時,該圖形的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校為了讓同學們走向操場、積極參加體育鍛煉,啟動了“學生陽光體育運動”,張明和李亮在體育運動中報名參加了百米訓練小組.在近幾次百米訓練中,教練對他們兩人的測試成績進行了統(tǒng)計和分析,請根據(jù)圖表中的信息解答以下問題:

平均數(shù)

中位數(shù)

方差

張明

13.3

0.004

李亮

13.3

0.02

1)張明第2次的成績?yōu)椋?/span>    秒;

2)張明成績的平均數(shù)為:    ;李亮成績的中位數(shù)為:    ;

3)現(xiàn)在從張明和李亮中選擇一名成績優(yōu)秀的去參加比賽,若你是他們的教練,應該選擇誰?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖反比例函數(shù)的圖象的一支在平面直角坐標系中的位置如圖所示,根據(jù)圖象回答下列問題

1圖象的另一支在第 象限;在每個象限內,yx的增大而 ;

2若此反比例函數(shù)的圖象經過點(-2,3),m的值.點A(-52是否在這個函數(shù)圖象上?點B(-3,4呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在平面直角坐標系中,網格中每一個小正方形的邊長為1個單位長度,△ABC的頂點均在格點上,三個頂點的坐標分別是A(-3,4),B(-21),C(-4,2).

(1)將△ABC先向右平移7個單位長度,再向上平移2個單位長度,畫出第二次平移后的△;

(2)以點O(0,0)為對稱中心,畫出與△ABC成中心對稱的△;

(3)將點B繞坐標原點逆時針方向旋轉90°至點,則點的坐標為(______,______)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)把數(shù)軸補充完整.

2)在數(shù)軸上表示下列各數(shù).

3)用連接起來.   

4)﹣|2|與﹣4之間的距離是   

3,﹣4,﹣(﹣1.5),﹣|2|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點FDA延長線上的一點,過⊙O上一點C作⊙O的切線交DF于點E,CEDF

(1)求證:AC平分∠FAB;

(2)AE1,CE2,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案