【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸交于A、B、C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(﹣4,0).

(1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);

(2)點(diǎn)D的坐標(biāo)為(0,4),點(diǎn)F為該二次函數(shù)在第一象限內(nèi)圖象上的動(dòng)點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.

①求S的最大值;

②在點(diǎn)F的運(yùn)動(dòng)過程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖象上時(shí),請(qǐng)直接寫出此時(shí)S的值.

【答案】(1),C(8,0);(2)50;18

【解析】

試題分析:(1)把A點(diǎn)和B點(diǎn)坐標(biāo)代入得到關(guān)于b、c的方程組,然后解方程組求出b、c即可得到拋物線的解析式;然后計(jì)算函數(shù)值為0時(shí)對(duì)應(yīng)的自變量的值即可得到C點(diǎn)坐標(biāo)

(2)①連結(jié)OF,如圖,設(shè)F(t,),利用S四邊形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面積公式得到S△CDF=,再利用二次函數(shù)的性質(zhì)得到△CDF的面積有最大值,然后根據(jù)平行四邊形的性質(zhì)可得S的最大值;

②由于四邊形CDEF為平行四邊形,則CD∥EF,CD=EF,利用C點(diǎn)和D的坐標(biāo)特征可判斷點(diǎn)C向左平移8個(gè)單位,再向上平移4個(gè)單位得到點(diǎn)D,則點(diǎn)F向左平移8個(gè)單位,再向上平移4個(gè)單位得到點(diǎn)E,即E(t﹣8,),然后把E(t﹣8,)代入拋物線解析式得到關(guān)于t的方程,再解方程求出t后計(jì)算△CDF的面積,從而得到S的值.

試題解析:(1)把A(0,8),B(﹣4,0)代入,,解得,所以拋物線的解析式為

當(dāng)y=0時(shí),,解得,,所以C點(diǎn)坐標(biāo)為(8,0);

(2)①連結(jié)OF,如圖,設(shè)F(t,),∵S四邊形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD===;

當(dāng)t=3時(shí),△CDF的面積有最大值,最大值為25,∵四邊形CDEF為平行四邊形,∴S的最大值為50;

②∵四邊形CDEF為平行四邊形,∴CD∥EF,CD=EF,∵點(diǎn)C向左平移8個(gè)單位,再向上平移4個(gè)單位得到點(diǎn)D,∴點(diǎn)F向左平移8個(gè)單位,再向上平移4個(gè)單位得到點(diǎn)E,即E(t﹣8,),∵E(t﹣8,)在拋物線上,∴ ,解得t=7,當(dāng)t=7時(shí),S△CDF==9,∴此時(shí)S=2S△CDF=18.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AEDC,垂足為E,F(xiàn)是AE與O的交點(diǎn),AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多邊形的內(nèi)角和是外角和的3倍,則它是_________ 邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9歲的小芳身高1.36米,她的表姐明年想報(bào)考北京的大學(xué).表姐的父母打算今年暑假帶著小芳及其表姐先去北京旅游一趟,對(duì)北京有所了解.他們四人7月31日下午從無錫出發(fā),1日到4日在北京旅游,8月5日上午返回?zé)o錫.

無錫與北京之間的火車票和飛機(jī)票價(jià)如下:火車 (高鐵二等座) 全票524元,身高1.1~1.5米的兒童享受半價(jià)票;飛機(jī) (普通艙) 全票1240元,已滿2周歲未滿12周歲的兒童享受半價(jià)票.他們往北京的開支預(yù)計(jì)如下:

住宿費(fèi)

(2人一間的標(biāo)準(zhǔn)間)

伙食費(fèi)

市內(nèi)交通費(fèi)

旅游景點(diǎn)門票費(fèi)

(身高超過1.2米全票)

每間每天x

每人每天100元

每人每天y

每人每天120元

假設(shè)他們四人在北京的住宿費(fèi)剛好等于上表所示其他三項(xiàng)費(fèi)用之和,7月31日和8月5日合計(jì)按一天計(jì)算,不參觀景點(diǎn),但產(chǎn)生住宿、伙食、市內(nèi)交通三項(xiàng)費(fèi)用.

(1)他們往返都坐火車,結(jié)算下來本次旅游總共開支了13668元,求x,y的值;

(2)若去時(shí)坐火車,回來坐飛機(jī),且飛機(jī)成人票打五五折,其他開支不變,他們準(zhǔn)備了14000元,是否夠用? 如果不夠,他們準(zhǔn)備不再增加開支,而是壓縮住宿的費(fèi)用,請(qǐng)問他們預(yù)定的標(biāo)準(zhǔn)間房價(jià)每天不能超過多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A校和B校分別庫存有電腦12臺(tái)和6臺(tái),現(xiàn)決定支援給C校10臺(tái)和D校8臺(tái).已知從A校調(diào)運(yùn)一臺(tái)電腦到C校和D校的運(yùn)費(fèi)分別為40元和10元;從B校調(diào)運(yùn)一臺(tái)電腦到C校和D校的運(yùn)費(fèi)分別為30元和20元.
(1)設(shè)A校運(yùn)往C校的電腦為x臺(tái),請(qǐng)仿照下圖,求總運(yùn)費(fèi)W(元)關(guān)于x的函數(shù)關(guān)系式;
(2)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,最低運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C是線段AB上一點(diǎn),點(diǎn)M、NP分別是線段AC、BCAB的中點(diǎn), ,求:

線段AM的長;

線段PN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB及直線AB外一點(diǎn)P,按下列要求完成畫圖和解答:1)連接PA,PB,用量角器畫出∠APB的平分線PC,AB于點(diǎn)C

2)過點(diǎn)PPDAB于點(diǎn)D;

3)用刻度尺取AB中點(diǎn)E連接PE;

4)根據(jù)圖形回答點(diǎn)P到直線AB的距離是線段 的長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出不等式kx+b﹣<0的解集.

(3)P是x軸上的一點(diǎn),且滿足△APB的面積是9,寫出P點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)同學(xué)對(duì)本校學(xué)生完成家庭作業(yè)的時(shí)間進(jìn)行了隨機(jī)抽樣調(diào)查,并繪成如下不完整的三個(gè)統(tǒng)計(jì)圖表.

組別

時(shí)間

(小時(shí))

頻數(shù)

(人)

頻率

A

0≤x≤0.5

20

0.2

B

0.5<x≤1

a

C

1<x≤1.5

D

x>1.5

30

0.3

合計(jì)

b

1.0

各組頻數(shù)、頻率統(tǒng)計(jì)表

各組人數(shù)分布扇形統(tǒng)計(jì)圖

各組頻數(shù)條形統(tǒng)計(jì)圖

(1)a= ,b= ,∠α= ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整。

(2)若該校有學(xué)生3200人,估計(jì)完成家庭作業(yè)時(shí)間超過1小時(shí)的人數(shù)。

(3)根據(jù)以上信息,請(qǐng)您給校長提一條合理的建議。

查看答案和解析>>

同步練習(xí)冊(cè)答案