【題目】拋物線y=﹣x2+(m1x+my軸交于(0,3)點.

1)求出m的值并畫出這條拋物線;

2)求它與x軸的交點和拋物線頂點的坐標;

3x取什么值時,拋物線在x軸上方?

4x取什么值時,y的值隨x值的增大而減。

【答案】1;(2,;(3;(4

【解析】

試題(1)由拋物線y=﹣x2+m﹣1x+my軸交于(03)得:m=3

拋物線為y=﹣x2+2x+3=﹣x﹣12+4

列表得:


X

﹣1


0


1


2


3


y


0


3


4


3


0

圖象如下.

2)由﹣x2+2x+3=0,得:x1=﹣1,x2=3

拋物線與x軸的交點為(﹣1,0),(3,0).

∵y=﹣x2+2x+3=﹣x﹣12+4

拋物線頂點坐標為(1,4).

3)由圖象可知:

﹣1x3時,拋物線在x軸上方.

4)由圖象可知:

x1時,y的值隨x值的增大而減小

考點: 二次函數(shù)的運用

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B2m,0)、C3m0)是平面直角坐標系中兩點,其中m為常數(shù),且m0,E0n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB2BC,畫射線OA,把ADC繞點C逆時針旋轉(zhuǎn)90°ADC,連接ED,拋物線yax2+bx+na≠0)過E、A兩點.

1)填空:∠AOB   °,用m表示點A的坐標:A   

2)當拋物線的頂點為A,拋物線與線段AB交于點P,且時,DOEABC是否相似?說明理由;

3)若E與原點O重合,拋物線與射線OA的另一個交點為M,過MMN垂直y軸,垂足為N

①求ab、m滿足的關(guān)系式;

②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為5,請你探究a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,按以下步驟作圖:

①:以點為圓心,以小于的長為半徑畫弧,分別交、于點;

②:分別以點為圓心,以大于的長為半徑畫弧,兩弧相交于點

③:作射線,交邊于點,

,,則

A. 3B. C. 6D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線與反比例函數(shù)>0)的圖象分別交于點 A(,4)和點B(8,),與坐標軸分別交于點C和點D.

(1)求直線AB的解析式;

(2)觀察圖象,當時,直接寫出的解集;

(3)若點P是軸上一動點,當△COD與△ADP相似時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點E、A、C在同一條直線上,AB∥CD,AB=CE,∠B=∠E.

(1)求證:△ABC≌△CED;

(2)若∠B=25°,∠ACB=45°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地發(fā)生8.1級強烈地震,我國積極組織搶險隊赴地震災(zāi)區(qū)參與搶險工作.如圖,某探測隊在地面A,B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+4x.

(1)寫出二次函數(shù)y=﹣x2+4x圖象的對稱軸;

(2)在給定的平面直角坐標系中,畫出這個函數(shù)的圖象(列表、描點、連線);

(3)根據(jù)圖象,寫出當y0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交A-30),B1,0)兩點,與y軸交于點C0,3),點D為拋物線的頂點.

1)求拋物線的解析式;

2)設(shè)點T在第二象限的拋物線上,若其關(guān)于原點的對稱點也在拋物線上,求點T的坐標;

3)點M為線段AB上一點(點M不與點A,B重合),過Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過PPQAB交拋物線于點Q,過QQNx軸于N,當矩形PMNQ的周長最大時,求△AEM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線ACBD交于O,EF過點OADBC分別交于E,F,若AB4,BC5,OE1.5,則四邊形EFCD的周長_____

查看答案和解析>>

同步練習冊答案