【題目】為響應(yīng)國家“垃圾分類進(jìn)校園”的號召,某校準(zhǔn)備購買新的分類垃圾箱進(jìn)行更換,已知購買5個A類垃圾箱和4個B類垃圾箱需花費1600元,購買3個A類垃圾箱的費用恰好等于購買4個B類垃圾箱的費用.
(1)求購買一個A類垃圾箱和一個B類垃圾箱各需多少元;
(2)該校計劃用不超過9000元的經(jīng)費購買A類和B類垃圾箱共50個,其中A類垃圾箱的數(shù)量不低于25個,則本次可以選擇的方案有幾種;
(3)在(2)的條件下哪種方案的費用最低,最低費用是多少元.
【答案】(1)200元;150元;(2)6種;(3)A類垃圾箱25個,B類垃圾箱25個;8750元
【解析】
(1)根據(jù)題意找到兩個等量關(guān)系,列出方程組即可,解方程組即可,等量關(guān)系:①買A類垃圾箱的費用+買B類垃圾箱的費用=1600元;②買3個A類垃圾箱的費用=購買4個B類垃圾箱的費用.
(2)根據(jù)費用不超過9000元,則:購買A類費用+購買B類垃圾箱費用,根據(jù)解不等式,可得答案.
(3)根據(jù)題意得W=200m+150(50-m)=50m+7500,利用一次函數(shù)的性質(zhì)解決最值問題即可.
(1)設(shè)購買一個A類垃圾箱需x元,購買一個B類垃圾箱需y元.
根據(jù)題意,得
解得
經(jīng)檢驗符合題意,
答:購買一個A類垃圾箱需200元,購買一個B類垃圾箱需150元.
(2)設(shè)購買m個A類垃圾箱,則購買(50-m)個B類垃圾箱,
根據(jù)題意,得,
解得
又∵,
∴.
∵m為正整數(shù),
∴共有6種方案.
(3)設(shè)購買的總費用為W元,則W=200m+150(50-m)=50m+7500.
∵50>0,
∴W隨著m的增大而增大,
當(dāng)m=25時,W有最小值,為W=8750,此時的方案為購買A類垃圾箱25個,B類垃圾箱25個.
答:共有6種方案可選,其中A類垃圾箱25個,B類垃圾箱25個時,費用最低,為8750元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y1=,y2=﹣(k>0).
(1)當(dāng)2≤x≤3時,函數(shù)y1的最大值是a,函數(shù)y2的最小值是a﹣4,求a和k的值.
(2)設(shè)m≠0,且m≠﹣1,當(dāng)x=m時,y1=p;當(dāng)x=m+1時,y1=q.圓圓說:“p一定大于q”.你認(rèn)為圓圓的說法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,,,為格點,為小正方形邊的中點.
(1)的長等于_________;
(2)點,分別為線段,上的動點,當(dāng)取得最小值時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段,,并簡要說明點和點的位置是如何找到的(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在全球關(guān)注的抗擊“新冠肺炎”中某跨國科研中心的一個團(tuán)隊研制了一種助治“新冠附炎”的新藥,在試驗藥效時發(fā)現(xiàn),如果成人按規(guī)定的制量服用,那么服藥后2小時血液中含藥量最高,達(dá)每毫升8微克(1微克=毫克),接著逐步安減,10小時時血液中含藥最為每毫升3微克,每毫升血液中含藥量(微克)隨時間(小時)的變化如圖所示.
(1)分別求線段所表示的函數(shù)關(guān)系式;
(2)如果每毫升血液中含藥量為4微克或4微克以上時對治病是有效的,那么這個有效時間是多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AB=4,以AD為直徑在矩形內(nèi)作半圓,點E為半圓上的一動點(不與A、D重合),連接DE、CE,當(dāng)△DEC為等腰三角形時,DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)都是整數(shù),且每個數(shù)都滿足都滿足,若的最小值是的最小值是,...,則的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準(zhǔn)互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更精準(zhǔn)地關(guān)愛留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個班級,發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.
(1)該班共有 名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對D類型的留守學(xué)生進(jìn)行手拉手關(guān)愛活動,請你估計該校將有多少名留守學(xué)生在此關(guān)愛活動中受益?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”越來越受到人們的關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有______人,條形統(tǒng)計圖中m的值為______;
(2)扇形統(tǒng)計圖中“了解很少”部分所對應(yīng)扇形的圓心角的度數(shù)為______;
(3)若該中學(xué)共有學(xué)生1800人,根據(jù)上述調(diào)查結(jié)果,可以估計出該學(xué)校學(xué)生中對校園安全知識達(dá)到“非常了解”和“基本了解”程度的總?cè)藬?shù)為______人;
(4)若從對校園安全知識達(dá)到“非常了解”程度的2名男生和2名女生中隨機(jī)抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com