精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABC中,ABAC2,點PBC上.若點PBC的中點,則mAP2+BPPC的值為多少?若BC邊上有100個不同的點P1P2,,P100,且miAPi2+BPiPiCi1,2,100),則mm1+m2+…+m100 的值為多少?

【答案】4,400.

【解析】

第一個空,由等腰三角形的三線合一性質和勾股定理得出AP2+BP2AB2即可;第二個空,ADBCD.根據勾股定理,APi2AD2+DPi2AD2+BDBPi2AD2+BD22BDBPi+BPi2,PiBPiCPiBBCPiB)=2BDBPiBPi2,從而求得m1AD2+BD2AB2,即可求解.

解:若點PBC的中點,如圖1所示:

ABAC2,

∴AP⊥BC,BPCP

∴∠APB90°,

∴AP2+BPPCAP2+BP2AB24

BC邊上有100個不同的點P1,P2,,P100,

AD⊥BCD,則BC2BD2CD,如圖2所示.

根據勾股定理,得

APi2AD2+DPi2AD2+BDBPi2AD2+BD22BDBPi+BPi2,

∵PiBPiCPiBBCPiB)=2BDBPiBPi2,

∴m1AD2+BD2AB24,

∴m1+m2+…+m1004×100400

故答案為:4400

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖是某地區(qū)一條公路隧道入口在平面直角坐標系中的示意圖,點AA1、點BB1分別關于y軸對稱.隧道拱部分BCB1為一段拋物線,最高點C離路面AA1的距離為8 m,點B離路面AA1的距離為6 m,隧道寬AA116 m.

(1)求隧道拱部分BCB1對應的函數表達式.

(2)現有一大型貨車,裝載某大型設備后,寬為4 m,裝載設備的頂部離路面均為7 m,問:它能否安全通過這個隧道?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,湖中的小島上有一標志性建筑物,其底部為A,某人在岸邊的B處測得AB的北偏東30°的方向上,然后沿岸邊直行4公里到達C處,再次測得AC的北偏西45°的方向上(其中AB、C在同一平面上).求這個標志性建筑物底部A到岸邊BC的最短距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,二次函數的圖象交坐標軸于 A(﹣1,0),B40),C

0,﹣4)三點,點 P 是直線 BC 下方拋物線上一動點.

1 求這個二次函數的解析式;

2 是否存在點 P,使POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點坐標;若不存在,請說明理由;

3 在拋物線上是否存在點 D(與點 A 不重合)使得 SDBCSABC,若存在,求出點 D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yax2+bx+3與直線yx3交于點A3,0)和點B(﹣2,n),與y軸交于點C

1)求出拋物線的函數表達式;

2)在圖1中,平移線段AC,點A、C的對應點分別為MN,當N點落在線段AB上時,M點也恰好在拋物線上,求此時點M的坐標;

3)如圖2,在(2)的條件下,在拋物線上是否存在點P(不與點A重合),使PMC的面積與AMC的面積相等?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某數學興趣小組的同學在一次活動中,為了測量某建筑物AB的高,他們來到另一建筑物CD上的點C處進行觀察,如圖所示,他們測得建筑物AB頂部A的仰角為30°,底部B的俯角為45°,已知建筑物AB、CD的距離DB為12m,求建筑物AB的高.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線于點F.

(1)圖中△APD與哪個三角形全等:_____

(2)猜想:線段PC、PE、PF之間存在什么關系:_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點OAB中點,點P為直線BC上的動點(不與點B、點C重合),連接OC、OP,將線段OP繞點P順時針旋轉60°,得到線段PQ,連接BQ

(1)如圖1,當點P在線段BC上時,試猜想寫出線段CPBQ的數量關系,并證明你的猜想;

(2)如圖2,當點PCB延長線上時,(1)中結論是否成立?(直接寫“成立”或“不成立”即可,不需證明).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某糧庫需要把晾曬場上的1200t玉米入庫封存.

(Ⅰ)入庫所需要的時間d(單位:天)與入庫平均速度v(單位:t/天)的函數解析式為_____

(Ⅱ)已知糧庫有職工60名,每天最多可入庫300t玉米,預計玉米入庫最快可在_____天內完成.

(Ⅲ)糧庫職工連續(xù)工作兩天后,天氣預報說未來幾天會下雨,糧庫決定次日把剩下的玉米全部入庫,至少需要增加_____名職工.

查看答案和解析>>

同步練習冊答案