【題目】下面是小明設(shè)計(jì)的在一個(gè)平行四邊形內(nèi)作菱形的尺規(guī)作圖過程.

已知:四邊形是平行四邊形.

求作:菱形(點(diǎn)上,點(diǎn)上).

作法:①以為圓心,長(zhǎng)為半徑作弧,交于點(diǎn)

②以為圓心,長(zhǎng)為半徑作弧,交于點(diǎn);

③連接.所以四邊形為所求作的菱形.

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵,

      

中,

∴四邊形為平行四邊形.

,

∴四邊形為菱形(   )(填推理的依據(jù)).

【答案】(1)作圖見解析;(2),鄰邊相等的平行四邊形是菱形.

【解析】

1)根據(jù)要求畫出圖形即可.
2)根據(jù)鄰邊相等的平行四邊形是菱形即可.

解:(1)四邊形為所求作的菱形.

2)∵,

,

中,

∴四邊形為平行四邊形.

,

∴四邊形為菱形(鄰邊相等的平行四邊形是菱形.)

故答案為:,,鄰邊相等的平行四邊形是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程

1

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一時(shí)鐘,時(shí)針OA長(zhǎng)為6cm,分針OB長(zhǎng)為8cm,OAB隨著時(shí)間的變化不停地改變形狀.求:

1)如圖①,13點(diǎn)時(shí),OAB的面積是多少?

2)如圖②,14點(diǎn)時(shí),OAB的面積比13點(diǎn)時(shí)增大了還是減少了?為什么?

3)問多少整點(diǎn)時(shí),OAB的面積最大?最大面積是多少?請(qǐng)說(shuō)明理由.

4)設(shè)∠BOAα0°≤α≤180°),試歸納α變化時(shí)OAB的面積有何變化規(guī)律(不證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線段AD及其延長(zhǎng)線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是_______(只填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠BAC=90°,過點(diǎn)B的直線MNAC,DBC邊上一點(diǎn),連接AD,作DEADMN于點(diǎn)E,連接AE.

(1)如圖①,當(dāng)∠ABC=45°時(shí),求證:AD=DE;理由;

(2)如圖②,當(dāng)∠ABC=30°時(shí),線段ADDE有何數(shù)量關(guān)系?并請(qǐng)說(shuō)明理由;

(3)當(dāng)∠ABC=α時(shí),請(qǐng)直接寫出線段ADDE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,矩形ABCD的邊長(zhǎng)AB2,BC2ADE為正三角形.

若半徑為R的圓能夠覆蓋五邊形ABCDE(即五邊形ABCDE的每個(gè)頂點(diǎn)都在圓內(nèi)或圓上),則R的最小值是(

A.2B.4C.2.8D.2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=ACADBCD,以AD為直徑的⊙OABE,交ACF

1)求證:BE=CF;

2)若AE=4,BC=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在菱形中,對(duì)角線相交于點(diǎn),,在菱形的外部以為邊作等邊三角形.點(diǎn)是對(duì)角線上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),將線段繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)得到線段,連接

1)線段的長(zhǎng)為__________;

2)如圖2,當(dāng)點(diǎn)在線段上,且點(diǎn),,三點(diǎn)在同一條直線上時(shí),求證:;

3)連接.若的周長(zhǎng)為,請(qǐng)直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+cx軸于A(﹣1,0),B(3,0),交y軸的負(fù)半軸于C,頂點(diǎn)為D.下列結(jié)論:①2a+b=0;②2c<3b;③當(dāng)m≠1時(shí),a+b<am2+bm;④當(dāng)△ABD是等腰直角三角形時(shí),則a= ;⑤當(dāng)△ABC是等腰三角形時(shí),a的值有3個(gè).其中正確的有(  )個(gè)

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案