【題目】解下列方程
(1)
(2)
(3)
(4)
【答案】(1)x=2或x=-4;(2)x=10;(3)x=4;(4)
【解析】
(1)去分母化為整式方程,求解整式方程并檢驗得到答案.
(2)兩邊平方化為整式方程,求解整式方程并檢驗可得答案.
(3)把方程化為,再兩邊平方
(4)找準最簡公分母,去分母化為整式方程,求解整式方程并檢驗即可.
解:(1)因為
去分母得:
整理得:
所以
解得:
經(jīng)檢驗:都是原方程的根,所以方程的解是.
(2)因為兩邊平方得:
整理得:, 所以
解得: ,經(jīng)檢驗:是原方程的增根,所以方程的解是.
(3)因為,所以 兩邊平方得:
,整理得: ,
兩邊平方并整理得,經(jīng)檢驗:是原方程的根,
所以原方程的解是.
(4)因為,
所以
去分母得:
整理得:,解得;
經(jīng)檢驗:是原方程的解,所以原方程的解是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)藝術(shù)節(jié)期間,向全校學(xué)生征集書畫作品九年級美術(shù)王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.
王老師所調(diào)查的4個班征集到作品共 件,其中B班征集到作品 件,請把圖2補充完整;
王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?
如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生現(xiàn)在要在其中抽兩人去參加學(xué)?偨Y(jié)表彰座談會,求恰好抽中一男一女的概率(要求寫出用樹狀圖或列表分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線與軸交于點,且過拋物線的頂點和拋物線上的另一點.
(1)若點
①求拋物線解析式;
②若,求直線解析式.
(2)若,過點作軸的平行線與拋物線的對稱軸交于點,當時,求的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級有1200名學(xué)生,在體育考試前隨機抽取部分學(xué)生進行跳繩測試,根據(jù)測試成績制作了下面兩個統(tǒng)計圖.請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次參加跳繩測試的學(xué)生人數(shù)為___________,圖①中的值為___________;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校九年級跳繩測試中得3分的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店計劃進A,B兩種水果共140千克,這兩種水果的進價和售價如表所示
進價元千克 | 售價元千克 | |
A種水果 | 5 | 8 |
B種水果 | 9 | 13 |
若該水果店購進這兩種水果共花費1020元,求該水果店分別購進A,B兩種水果各多少千克?
在的基礎(chǔ)上,為了迎接春節(jié)的來臨,水果店老板決定把A種水果全部八折出售,B種水果全部降價出售,那么售完后共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請結(jié)合題意,完成本題的解答:
(Ⅰ)解不等式①,得______;
(Ⅱ)解不等式②,得______;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】位于重慶市匯北區(qū)的照母山森林公園乘承“近自然”生態(tài)理念營造森林風(fēng)景,“雖由人作,宛自天開”,凸顯自然風(fēng)骨與原生野趣.山中最為矚目的經(jīng)典當屬攬星塔.登臨塔頂,可上九天邀月攬星,可鳥瞰新區(qū),領(lǐng)略附近樓宇的壯美;亦可遠眺兩江勝景.登臨此塔,讓你有飄然若仙的聯(lián)想又有登高遠眺,“一覽眾山小”的震撼,我校某數(shù)學(xué)興趣小組的同學(xué)準備利用所學(xué)的三角函數(shù)知識估測該塔的高度,已知攬星塔AB位于坡度l=:1的斜坡BC上,測量員從斜坡底端C處往前沿水平方向走了120m達到地面D處,此時測得攬星塔AB頂端A的仰角為37°,攬星塔底端B的仰角為30°,已知A、B、C、D在同一平面內(nèi),則該塔AB的高度為( 。m,(結(jié)果保留整數(shù),參考數(shù)據(jù);sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
A.31B.40C.60D.136
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,四邊形是矩形,,點是線段上一動點 (不與重合),點是線段延長線上一動點,連接交于點.設(shè),已知與之間的函數(shù)關(guān)系如圖②所示.
(1)求圖②中與的函數(shù)表達式;
(2)求證:;
(3)是否存在的值,使得是等腰三角形?如果存在,求出的值;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明設(shè)計的“在一個平行四邊形內(nèi)作菱形”的尺規(guī)作圖過程.
已知:四邊形是平行四邊形.
求作:菱形(點在上,點在上).
作法:①以為圓心,長為半徑作弧,交于點;
②以為圓心,長為半徑作弧,交于點;
③連接.所以四邊形為所求作的菱形.
根據(jù)小明設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵,,
∴ = .
在中,.
即.
∴四邊形為平行四邊形.
∵,
∴四邊形為菱形( )(填推理的依據(jù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com