【題目】如圖,反比例函數(shù)的圖象分別與矩形的邊,相交于點,,與對角線交于點,以下結(jié)論:
①若與的面積和為2,則;
②若點坐標為,,則;
③圖中一定有;
④若點是的中點,且,則四邊形的面積為18.
其中一定正確個數(shù)是( )
A.1B.2C.3D.4
【答案】C
【解析】
①根據(jù)反比例函數(shù)比例系數(shù)的幾何意義,可知與的面積相等,均為1,據(jù)此即可求出的值;
②根據(jù)點坐標為,,求出、的長,計算出的面積,據(jù)此即可求出的值;
③根據(jù)與的面積相等,列出等式,然后寫成比例式,再轉(zhuǎn)化為,然后利用合比性質(zhì)解答.
④根據(jù)反比例函數(shù)的幾何意義,求出,進而得出,再求出,從而得到四邊形的面積.
解:①、均在反比例函數(shù)圖象上,
,
又與的面積和為2,
,
;故本選項正確;
②點坐標為,
,,
,
,,
;故本選項錯誤;
③與的面積相等,
,
,
,
,
,
,故本選項正確;
④過F點作交OC于G點,過F點作交OA于H點,
,
,
又∵點是的中點,
,
,
,故本選項正確;
總上所述,正確的有3個,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,先將正方形紙片兒對折,折痕為MN,再把點B折疊在折痕MN上,折痕為AE,點E在CB上,點B在MN上的對應(yīng)點為H,沿AH和DH剪下得到三角形ADH,則下列選項錯誤的是( 。
A. DH=AD B. AH=DH C. NE=BE D. DM=DH
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,平面內(nèi)互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標系,兩條數(shù)軸稱為斜坐標系的坐標軸,公共原點稱為斜坐標系的原點,如圖1,經(jīng)過平面內(nèi)一點P作坐標軸的平行線PM和PN,分別交x軸和y軸于點M,N.點M、N在x軸和y軸上所對應(yīng)的數(shù)分別叫做P點的x坐標和y坐標,有序?qū)崝?shù)對(x,y)稱為點P的斜坐標,記為P(x,y)
(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點D,
OA=2,OC=1.
①點A、B、C在此斜坐標系內(nèi)的坐標分別為A ,B ,C .
②設(shè)點P(x,y)在經(jīng)過O、B兩點的直線上,則y與x之間滿足的關(guān)系為 .
③設(shè)點Q(x,y)在經(jīng)過A、D兩點的直線上,則y與x之間滿足的關(guān)系為 .
(2)若ω=120°,O為坐標原點.
①如圖3,圓M與y軸相切原點O,被x軸截得的弦長OA=2,求圓M的半徑及圓心M的斜坐標.
②如圖4,圓M的圓心斜坐標為M(2,2),若圓上恰有兩個點到y軸的距離為1,則圓M的半徑r的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y= -x+3與x軸,y軸分別相交于點B、C,經(jīng)過B、C兩點的拋物線與x軸的另一交點為A,頂點為P,且對稱軸為直線x=2.
(1)求A點的坐標;
(2)求該拋物線的函數(shù)表達式;
(3)連結(jié)AC.請問在x軸上是否存在點Q,使得以點P、B、Q為頂點的三角形與△ABC 相似,若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知拋物線與軸最多有一個交點,現(xiàn)有以下三個結(jié)論:①該拋物線的對稱軸在軸右側(cè);②關(guān)于的方程無實數(shù)根;③;其中,正確結(jié)論的個數(shù)為( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知內(nèi)接于⊙,直徑交于點,連接,過點作,垂足為.過點作⊙的切線,交的延長線于點.
(1)若,求的度數(shù);
(2)若,求證:;
(3)在(2)的條件下,連接,設(shè)的面積為,的面積為,若,求的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c交x軸于A、B兩點,其中點A坐標為(1,0),與y軸交于點C(0,﹣3).
(1)求拋物線的函數(shù)表達式;
(2)如圖①,連接AC,點P在拋物線上,且滿足∠PAB=2∠ACO.求點P的坐標;
(3)如圖②,點Q為x軸下方拋物線上任意一點,點D是拋物線對稱軸與x軸的交點,直線AQ、BQ分別交拋物線的對稱軸于點M、N.請問DM+DN是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;
(2)求關(guān)于的函數(shù)關(guān)系式,并計算該汽車在剩余油量5升時,已行駛的路程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com