【題目】如圖,是四邊形的對(duì)角線,AD//BC,,分別過點(diǎn)、,垂足分別為點(diǎn),若,則圖中全等的三角形有(

A.對(duì)B.對(duì)C.對(duì)D.對(duì)

【答案】C

【解析】

求出DE=BF,根據(jù)平行線性質(zhì)求出∠ADE=CBF,根據(jù)ASA推出ADE≌△CBF,推出AE=CF,根據(jù)SAS推出ABE≌△CDF,推出AD=BC,根據(jù)SAS推出ADB≌△CBD即可.

解:∵BD=BD,BE=DF,
DE=BF,
ADBC,
∴∠ADE=CBF,
ADECBF

∴△ADE≌△CBFASA),
AE=CF,

在△ABE和△CDF

∴△ABE≌△CDFSAS),
AD=BC
在△ADB和△CBD

∴△ADB≌△CBDSAS),

即有3對(duì)全等三角形,
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)(6x-1)2=25;

(2)x2-2x=2x-1;

(3)x2x=2;

(4)x(x-7)=8(7-x).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,A、B兩點(diǎn)同時(shí)從原點(diǎn)O出發(fā),點(diǎn)A以每秒x個(gè)單位長(zhǎng)度沿x軸的負(fù)方向運(yùn)動(dòng),點(diǎn)B以每秒y個(gè)單位長(zhǎng)度沿y軸的正方向運(yùn)動(dòng).

1)若|x+2y-10|+|2x-y|=0,試分別求出1秒鐘后AOB的面積;

2)如圖2,所示,設(shè)∠BAO的鄰補(bǔ)角和∠ABO的鄰補(bǔ)角的平分線相交于點(diǎn)P,問:點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠P的大小是否會(huì)發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說明理由;

3)如圖3所示,延長(zhǎng)BAE,在∠ABO的內(nèi)部作射線BFx軸于點(diǎn)C,若∠EAC、∠FCA、∠ABC的平分線相交于點(diǎn)G,過點(diǎn)GBE的垂線,垂足為H,設(shè)∠AGH=α,∠BGC=β,試探究出αβ滿足的數(shù)量關(guān)系并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△ABC中,BAC=90°,AB=AC,點(diǎn)EABC內(nèi)一點(diǎn),連接AE,CE,CEAE,過點(diǎn)BBDAE,交AE的延長(zhǎng)線于D

1)如圖1,求證BD=AE

2)如圖2,點(diǎn)HBC中點(diǎn),分別連接EH,DH,求EDH的度數(shù);

3)如圖3,在(2)的條件下,點(diǎn)MCH上的一點(diǎn),連接EM,點(diǎn)FEM的中點(diǎn),連接FH,過點(diǎn)DDGFH,交FH的延長(zhǎng)線于點(diǎn)G,若GHFH=65,FHM的面積為30,EHB=∠BHG,求線段EH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在今年年初,新型冠狀病毒在武漢等地區(qū)肆虐,為了緩解湖北地區(qū)的疫情,全國(guó)各地的醫(yī)療隊(duì)員都紛紛報(bào)名支援湖北,某方艙醫(yī)院需要8組醫(yī)護(hù)人員支援,要求每組分配的人數(shù)相同,若按每組人數(shù)比預(yù)定人數(shù)多分配1人,則總數(shù)會(huì)超過100人,若每組人數(shù)比預(yù)定人數(shù)少分配一人,則總數(shù)不夠90人,那么預(yù)定每組分配的人數(shù)是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓的直徑為,在圓上位于直徑的異側(cè)有定點(diǎn)和動(dòng)點(diǎn),已知,點(diǎn)在半圓弧上運(yùn)動(dòng)(不與、重合),過的垂線的延長(zhǎng)線于點(diǎn).

)求證:

)當(dāng)點(diǎn)運(yùn)動(dòng)到弧中點(diǎn)時(shí),求的長(zhǎng).

)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí), 的面積最大?并求這個(gè)最大面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】安慶市在精準(zhǔn)扶貧活動(dòng)中,因地制宜指導(dǎo)農(nóng)民調(diào)整種植結(jié)構(gòu),增加種植效益,2018年李大伯家在工作隊(duì)的幫助下,計(jì)劃種植馬鈴薯和蔬菜共15畝,預(yù)計(jì)每畝的投入與產(chǎn)出如下表:(每畝產(chǎn)出-每畝投入=每畝純收入)

種類

投入(元)

產(chǎn)出(元)

馬鈴薯

1000

4500

蔬菜

1200

5300

1)如果這15畝地的純收入要達(dá)到54900元,需種植馬鈴薯和蔬菜各多少畝?

2)如果總投入不超過16000元,則最多種植蔬菜多少畝?該情況下15畝地的純收入是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.

1)求圓弧所在的圓的半徑r的長(zhǎng);

2)當(dāng)洪水泛濫到跨度只有30米時(shí),要采取緊急措施,若拱頂離水面只有4米,即PE=4米時(shí),是否要采取緊急措施?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,D為邊BA延長(zhǎng)線上一點(diǎn),連接CD,以CD為一邊作等邊三角形CDE,連接AE

1)求證:△CBD≌△CAE

2)判斷AEBC的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案