【題目】如圖,拋物線y=ax2+6x+cx軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=x﹣5經(jīng)過點(diǎn)B,C.

(1)求拋物線的解析式;

(2)過點(diǎn)A的直線交直線BC于點(diǎn)M.

①當(dāng)AMBC時,過拋物線上一動點(diǎn)P(不與點(diǎn)B,C重合),作直線AM的平行線交直線BC于點(diǎn)Q,若以點(diǎn)A,M,P,Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的橫坐標(biāo);

②連接AC,當(dāng)直線AM與直線BC的夾角等于∠ACB2倍時,請直接寫出點(diǎn)M的坐標(biāo).

【答案】(1)拋物線解析式為y=﹣x2+6x﹣5;(2)P點(diǎn)的橫坐標(biāo)為4;②點(diǎn)M的坐標(biāo)為(,﹣)或(,﹣).

【解析】(1)利用一次函數(shù)解析式確定C(0,-5),B(5,0),然后利用待定系數(shù)法求拋物線解析式;

(2)①先解方程-x2+6x-5=0A(1,0),再判斷△OCB為等腰直角三角形得到∠OBC=∠OCB=45°,則△AMB為等腰直角三角形,所以AM=2,接著根據(jù)平行四邊形的性質(zhì)得到PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BCD,如圖1,利用∠PDQ=45°得到PD=PQ=4,設(shè)P(m,-m2+6m-5),則D(m,m-5),討論:當(dāng)P點(diǎn)在直線BC上方時,PD=-m2+6m-5-(m-5)=4;當(dāng)P點(diǎn)在直線BC下方時,PD=m-5-(-m2+6m-5),然后分別解方程即可得到P點(diǎn)的橫坐標(biāo);

②作AN⊥BCN,NH⊥x軸于H,作AC的垂直平分線交BCM1,交ACE,如圖2,利用等腰三角形的性質(zhì)和三角形外角性質(zhì)得到∠AM1B=2∠ACB,再確定N(3,-2),

AC的解析式為y=5x-5,E點(diǎn)坐標(biāo)為(,-),利用兩直線垂直的問題可設(shè)直線EM1的解析式為y=-x+b,把E(,-)代入求出b得到直線EM1的解析式為y=-x-,則解方程組M1點(diǎn)的坐標(biāo);作直線BC上作點(diǎn)M1關(guān)于N點(diǎn)的對稱點(diǎn)M2,如圖2,利用對稱性得到∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x-5),根據(jù)中點(diǎn)坐標(biāo)公式得到3=,然后求出x即可得到M2的坐標(biāo),從而得到滿足條件的點(diǎn)M的坐標(biāo).

1)當(dāng)x=0時,y=x5=5,則C0,﹣5),

當(dāng)y=0時,x5=0,解得x=5,則B50),

B50),C0,﹣5)代入y=ax2+6x+c

,解得,

∴拋物線解析式為y=x2+6x5;

2)①解方程﹣x2+6x5=0x1=1x2=5,則A10),

B5,0),C0,﹣5),

OCB為等腰直角三角形,

∴∠OBC=OCB=45°

AMBC,

∴△AMB為等腰直角三角形,

AM=AB=×4=2,

∵以點(diǎn)A,M,PQ為頂點(diǎn)的四邊形是平行四邊形,AMPQ

PQ=AM=2,PQBC,

PDx軸交直線BCD,如圖1,則∠PDQ=45°

PD=PQ=×2=4,

設(shè)Pm,﹣m2+6m5),則Dm,m5),

當(dāng)P點(diǎn)在直線BC上方時,

PD=m2+6m5﹣(m5=m2+5m=4,解得m1=1,m2=4,

當(dāng)P點(diǎn)在直線BC下方時,

PD=m5﹣(﹣m2+6m5=m25m=4,解得m1=m2=,

綜上所述,P點(diǎn)的橫坐標(biāo)為4;

②作ANBCNNHx軸于H,作AC的垂直平分線交BCM1,交ACE,如圖2,

M1A=M1C,

∴∠ACM1=CAM1

∴∠AM1B=2ACB,

∵△ANB為等腰直角三角形,

AH=BH=NH=2,

N3,﹣2),

易得AC的解析式為y=5x5E點(diǎn)坐標(biāo)為(,﹣

設(shè)直線EM1的解析式為y=x+b,

E,﹣)代入得﹣+b=,解得b=,

∴直線EM1的解析式為y=x

解方程組,則M1,﹣);

作直線BC上作點(diǎn)M1關(guān)于N點(diǎn)的對稱點(diǎn)M2,如圖2,則∠AM2C=AM1B=2ACB

設(shè)M2x,x5),

3=

x=,

M2,﹣.

綜上所述,點(diǎn)M的坐標(biāo)為(,﹣)或(,﹣).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3x軸交于點(diǎn)A,C(點(diǎn)A在點(diǎn)C的右側(cè)),與y軸交于點(diǎn)B

1)求點(diǎn)A,B的坐標(biāo)及直線AB的函數(shù)表達(dá)式;

2)若直線lx軸,且直線l在第一象限內(nèi)與拋物線交于點(diǎn)M,與直線AB交于點(diǎn)N,求點(diǎn)M與點(diǎn)N之間的距離的最大值,并求出此時點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌手機(jī)去年每臺的售價y(元)與月份x之間滿足函數(shù)關(guān)系:y=﹣50x+2600,去年的月銷量p(萬臺)與月份x之間成一次函數(shù)關(guān)系,其中1﹣6月份的銷售情況如下表:

月份(x)

1月

2月

3月

4月

5月

6月

銷售量(p)

3.9萬臺

4.0萬臺

4.1萬臺

4.2萬臺

4.3萬臺

4.4萬臺

(1)求p關(guān)于x的函數(shù)關(guān)系式;

(2)求該品牌手機(jī)在去年哪個月的銷售金額最大?最大是多少萬元?

(3)今年1月份該品牌手機(jī)的售價比去年12月份下降了m%,而銷售量也比去年12月份下降了1.5m%.今年2月份,經(jīng)銷商決定對該手機(jī)以1月份價格的“八折”銷售,這樣2月份的銷售量比今年1月份增加了1.5萬臺.若今年2月份這種品牌手機(jī)的銷售額為6400萬元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x與雙曲線y=x>0)交于點(diǎn)A,將直線y=x向下平移個6單位后,與雙曲線y=x>0)交于點(diǎn)B,與x軸交于點(diǎn)C,則C點(diǎn)的坐標(biāo)為_____;若=2,則k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點(diǎn)C的俯角為30°,測得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果精確到0.1 m)(參考數(shù)據(jù): ≈1.414,、≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組在活動課上測量學(xué)校旗桿的高度.已知小亮站著測量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點(diǎn)B、D、F在同一直線上).

(1)求小敏到旗桿的距離DF.(結(jié)果保留根號)

(2)求旗桿EF的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α45°,旗桿底端D到大樓前梯坎底邊的距離DC20米,梯坎坡長BC12米,梯坎坡度i=1:,則大樓AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)

A. 30.6 B. 32.1 C. 37.9 D. 39.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為⊙O的內(nèi)接正三角形,P為弧BC上一點(diǎn),PABCD,已知PB3,PC6,則PD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次中學(xué)生田徑運(yùn)動會上,根據(jù)參加男子跳高初賽的運(yùn)動員的成績(單位:m),繪制出如下的統(tǒng)計(jì)圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)圖①中的值為__________;

(Ⅱ)求統(tǒng)計(jì)的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)這組初賽成績,由高到低確定10人能進(jìn)入復(fù)賽,請直接寫出初賽成績?yōu)?/span>的運(yùn)動員能否進(jìn)入復(fù)賽.

查看答案和解析>>

同步練習(xí)冊答案