【題目】如圖1,拋物線y=ax2+(a+2)x+2(a≠0)與x軸交于點(diǎn)A(4,0)和點(diǎn)C,與y軸交于點(diǎn)B.
(1)求拋物線解析式和點(diǎn)B坐標(biāo);
(2)在x軸上有一動(dòng)點(diǎn)P(m,0)過(guò)點(diǎn)P作x軸的垂線交直線AB于點(diǎn)N,交拋物線與點(diǎn)M,當(dāng)點(diǎn)M位于第一象限圖象上,連接AM,BM,求△ABM面積的最大值及此時(shí)M點(diǎn)的坐標(biāo);
(3)如圖2,點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為D,連接AD,BC.
①填空:點(diǎn)P是線段AC上一點(diǎn)(不與點(diǎn)A、C重合),點(diǎn)Q是線段AB上一點(diǎn)(不與點(diǎn)A、B重合),則兩條線段之和PQ+BP的最小值為 ;
②填空:將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)a(0°<α<180°),當(dāng)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′落在△ABD的邊所在直線上時(shí),則此時(shí)點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為 .
【答案】(1)拋物線解析式為y=x2+x+2,B(0,2);(2)S△ABM的最大值=4,(2,3);(3)或或.
【解析】
(1)將A(4,0)代入y=ax2+(a+2)x+2,可求出a的值,將a的值代入即得到拋物線解析式,令x=0,求y,得點(diǎn)B坐標(biāo);
(2)待定系數(shù)法求直線AB的解析式,設(shè)點(diǎn)P(m,0),將S△ABM表示成m的二次函數(shù),配方成頂點(diǎn)式即可求得△ABM面積的最大值及此時(shí)M點(diǎn)的坐標(biāo);
(3)①求PQ+BP的最小值利用對(duì)稱進(jìn)行轉(zhuǎn)化,應(yīng)用“兩點(diǎn)之間線段最短”及“垂線段最短”可以得到“PQ+BP的最小值”即為點(diǎn)D到直線AB的距離;.
②題在△ABC繞A逆時(shí)針旋轉(zhuǎn)過(guò)程中,按照依次落在直線BD、AD、AB上分類討論.
(1)將A(4,0)代入y=ax2+(a+2)x+2,
得16a+4(a+2)+2=0,解得a=,
∴拋物線解析式為y=x2+x+2,
令x=0,得y=2,
∴B(0,2);
(2)如圖1,過(guò)點(diǎn)M作ME⊥AB于E,設(shè)P(m,0),M(m,m2+m+2),
設(shè)直線AB的解析式為y=kx+b,將A(4,0),B(0,2)分別代入,
得,解得,
∴直線AB的解析式為y=x+2,
∴N(m,m+2),
∴MN=m2+m+2-(m+2)= m2+2m,
∵MN⊥x軸,
∴MN∥y軸,
∴∠MNE=∠ABO,又∵∠MEN=∠AOB=90°,
∴△MEN∽△AOB,
∴,
∴ME×AB=AO×MN,
∴=﹣(m﹣2)2+4,
∵﹣1<0,0<m<4,
∴當(dāng)m=2時(shí),S△ABM的最大值=4,
此時(shí),點(diǎn)M的坐標(biāo)為(2,3);
(3)①如圖2,連接BP、DP、PQ,則PQ+BP=PQ+DP,只有當(dāng)D、P、Q三點(diǎn)在同一直線上,且DP⊥AB時(shí),PQ+BP的值最小.
過(guò)點(diǎn)D作DQ⊥AB于Q,交x軸于P,OA=4,OB=2,AB==2,
∵B、D關(guān)于x軸對(duì)稱,
∴D(0,﹣2),BD=4,
∵BD×AO=DQ×AB,
∴DQ=,即PQ+BP的最小值=,
故答案為:;
②如圖3,點(diǎn)C′落在直線BD上,
在拋物線解析式y=x2+x+2中,令y=0,解得x1=4,x2=﹣1,
∴C(﹣1,0),AC=5,BC=,
∵AB2+BC2=(2)2+()2=25=AC2,
∴∠ABC=90°,
由旋轉(zhuǎn)知,AC′=AC=5,B′C′=BC=,AB′=AB=2,∠AB′C′=∠ABC=90°,
OC′==3,∴C′(0,﹣3),
設(shè)AB′交y軸于F,過(guò)B′作B′G⊥y軸于G,
∵∠AOF=∠C′B′F=90°,∠AFO=∠C′FB′
∴△AFO∽△C′FB′,
∴∠FAO=∠FC′B′,,即,
∴AF=,
∵AO2+OF2=AF2,
∴,解得OF=,
∴AF=,
∵∠C′GB′=∠AOF=90°,
∴△C′GB′∽△AOF,
∴,即B′G×AF=OF×B′C′,
∴,∴,
∴,即C′G×AF=OA×B′C′,
∴,∴,
∴;
如圖4,點(diǎn)C′落在直線AD上,∵∠BAC=∠OAD,
∴點(diǎn)B的對(duì)應(yīng)點(diǎn)B′落在x軸上,由旋轉(zhuǎn)知:△AB′C′≌△ABC,
∴AB′=AB=2,OB′=2-4,
∴B′(4-2,0);
如圖5,點(diǎn)C′落在直線AB上,過(guò)C′作C′B″⊥x軸于B″,作B′M⊥x軸于M,作DQ⊥AB于Q,
∵∠B″AC′=∠BAC=∠B′AC′,∠AB″C′=∠AB′C′=∠ABC=∠AQD=∠AM′=90°,AC′=AC=5,
∴∠BAD=∠B′AB″,AB=AD=AB′=AB″,
∴△ADQ≌△AB′M,
∴B′M=DQ=,
∴,
OM=OA+AM=4+=,
∴B′(,-),
故答案為:或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D是BC邊的中點(diǎn)連接AD,則易證AD=BD=CD,即AD=BC;如圖2,若將題中AB=AC這個(gè)條件刪去,此時(shí)AD仍然等于BC.
理由如下:延長(zhǎng)AD到H,使得AH=2AD,連接CH,先證得△ABD≌△CHD,此時(shí)若能證得△ABC≌△CHA,
即可證得AH=BC,此時(shí)AD=BC,由此可見倍長(zhǎng)過(guò)中點(diǎn)的線段是我們?nèi)切巫C明中常用的方法.
(1)請(qǐng)你先證明△ABC≌△CHA,并用一句話總結(jié)題中的結(jié)論;
(2)現(xiàn)將圖1中△ABC折疊(如圖3),點(diǎn)A與點(diǎn)D重合,折痕為EF,此時(shí)不難看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若圖2中△ABC也進(jìn)行這樣的折疊(如圖4),此時(shí)線段BE、CF、EF還有這樣的關(guān)系式嗎?若有,請(qǐng)證明;若沒(méi)有,請(qǐng)舉反例.
(3)在(2)的條件下,將圖3中的△DEF繞著點(diǎn)D旋轉(zhuǎn)(如圖5),射線DE、DF分別交AB、AC于點(diǎn)E、F,此時(shí)(2)中結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.圖4中的△DEF也這樣旋轉(zhuǎn)(如圖6),直接寫出上面的關(guān)系式是否成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(a≠0)與y軸交與點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(4,0),拋物線的對(duì)稱軸方程為x=1.
(1)求拋物線的解析式;
(2)點(diǎn)M從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)N從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)△MBN的面積為S,點(diǎn)M運(yùn)動(dòng)時(shí)間為t,試求S與t的函數(shù)關(guān)系,并求S的最大值;
(3)在點(diǎn)M運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組;請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得____________________;
(Ⅱ)解不等式②,得____________________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái):
(Ⅳ)原不等式組的解集為_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“機(jī)動(dòng)車行駛到斑馬線要禮讓行人”等交通法規(guī)實(shí)施后,某校數(shù)學(xué)課外實(shí)踐小組就對(duì)這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)填空:本次共調(diào)查_____名學(xué)生;扇形統(tǒng)計(jì)圖中C所對(duì)應(yīng)扇形的圓心角度數(shù)是_____°;
(2)請(qǐng)直接補(bǔ)全條形統(tǒng)計(jì)圖;
(3)填空:扇形統(tǒng)計(jì)圖中,m的值為_____;
(4)該校共有500名學(xué)生,根據(jù)以上信息,請(qǐng)你估計(jì)全校學(xué)生中對(duì)這些交通法規(guī)“非常了解”的約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)在同一線路上順次有三個(gè)景點(diǎn)A,B,C,甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C;乙花20分鐘時(shí)間排隊(duì)后乘觀光車先到景點(diǎn)B,在B處停留一段時(shí)間后,再步行到景點(diǎn)C.甲、乙兩人離景點(diǎn)A的路程s(米)關(guān)于時(shí)間t(分鐘)的函數(shù)圖像如圖所示.
(1)甲的速度是 米/分鐘;
(2)當(dāng)20≤t ≤30時(shí),求乙離景點(diǎn)A的路程s與t的函數(shù)表達(dá)式;
(3)乙出發(fā)后多長(zhǎng)時(shí)間與甲在途中相遇?
(4)若當(dāng)甲到達(dá)景點(diǎn)C時(shí),乙與景點(diǎn)C的路程為360米,則乙從景點(diǎn)B步行到景點(diǎn)C的速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線(k為常數(shù),且)與直線交于兩點(diǎn).
(1)求k與b的值;
(2)如圖,直線AB交x軸于點(diǎn)C,交y軸于點(diǎn)D,若點(diǎn)E為CD的中點(diǎn),求△BOE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣2,2)和點(diǎn)B(﹣3,﹣2)的位置如圖所示.
(1)作出線段AB關(guān)于y軸對(duì)稱的線段A′B′,并寫出點(diǎn)A、B的對(duì)稱點(diǎn)A′、B′的坐標(biāo);
(2)連接AA′和BB′,請(qǐng)?jiān)趫D中畫一條線段,將圖中的四邊形AA′B′B分成兩個(gè)圖形,其中一個(gè)是軸對(duì)稱圖形,另一個(gè)是中心對(duì)稱圖形,并且線段的一個(gè)端點(diǎn)為四邊形的頂點(diǎn),另一個(gè)端點(diǎn)在四邊形一邊的格點(diǎn)上.(每個(gè)小正方形的頂點(diǎn)均為格點(diǎn)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC⊥BC,AC=BC=4,以BC為直徑作半圓,圓心為O.以點(diǎn)C為圓心,BC為半徑作弧AB,過(guò)點(diǎn)O作AC的平行線交兩弧于點(diǎn)D、E,則陰影部分的面積是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com