【題目】如圖,AB為⊙O的直徑,C為⊙O外一點(diǎn),且∠CAB=90°,BD是⊙O的弦,BD∥CO.
(1)請(qǐng)說明:CD是⊙O的切線:
(2)若AB=4,BC=2.則陰影部分的面積為
【答案】(1)詳見解析;(2)
【解析】
(1)連接OD,易證△CAO≌△CDO(SAS),由全等三角形的性質(zhì)可得∠CDO=∠CAO=90°,即CD⊥OD,進(jìn)而可證明CD是⊙O的切線;
(2)過點(diǎn)O作OE⊥BD,垂足為E,首先利用勾股定理可求出AC,OC的長,證得△OBD是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.
(1)證明:如圖,連接OD,
∵BD∥CO,
∴∠DBO=∠COA,∠ODB=∠COD,
在⊙O中,OB=OD,
∴∠DBO=∠ODB,
∴∠COA=∠COD,
在△CAO和△CDO中, ,
∴△CAO≌△CDO(SAS).,
∴∠CDO=∠CAO=90°,
即 CD⊥OD,
又∵OD是⊙O的半徑,
∴CD是⊙O的切線;
(2)如圖,過點(diǎn)O作OE⊥BD,垂足為E.
在Rt△ABC中,AC=,
∴OC==4,
∴∠AOC=60°,
∵△CAO≌△CDO,
∴∠COD=∠COA=60°,
∴∠BOD=60°,
∴△BOD是等邊三角形,
∴BD=OD=2,OE=,
∴陰影部分的面積=S扇形BOD﹣S△BOD=﹣×2×=π﹣.
故答案為:π﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了豐富同學(xué)們的課外活動(dòng)生活,開設(shè)了“第二課堂”.課堂設(shè)置了十幾個(gè)動(dòng)項(xiàng)目,根據(jù)(1)班學(xué)生報(bào)名參加的項(xiàng)目,繪制成如下的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
結(jié)合圖中信息,回答下列問題
(1)這個(gè)班學(xué)生人數(shù)有 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,在扇形統(tǒng)計(jì)圖中其它項(xiàng)目所對(duì)的圓心角為 ;
(3)喜歡羽毛球的有3名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)參加學(xué)校的羽毛球隊(duì),用列表或樹狀圖求出所抽取的2名同學(xué),恰好2人都是男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠ACB=90°,tanB=,AB=5,點(diǎn)O為邊AB上一動(dòng)點(diǎn),以O為圓心,OB為半徑的圓交射線BC于點(diǎn)E,以A為圓心,OB為半徑的圓交射線AC于點(diǎn)G.
(1)如圖1,當(dāng)點(diǎn)E、G分別在邊BC、AC上,且CE=CG時(shí),請(qǐng)判斷圓A與圓O的位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)圓O與圓A存在公共弦MN時(shí)(如圖2),設(shè)OB=x,MN=y,求y關(guān)于x的函數(shù)解析式,并寫出定義域;
(3)設(shè)圓A與邊AB的交點(diǎn)為F,聯(lián)結(jié)OE、EF,當(dāng)△OEF為以OE為腰的等腰三角形時(shí),求圓O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D是BC邊的中點(diǎn)連接AD,則易證AD=BD=CD,即AD=BC;如圖2,若將題中AB=AC這個(gè)條件刪去,此時(shí)AD仍然等于BC.
理由如下:延長AD到H,使得AH=2AD,連接CH,先證得△ABD≌△CHD,此時(shí)若能證得△ABC≌△CHA,
即可證得AH=BC,此時(shí)AD=BC,由此可見倍長過中點(diǎn)的線段是我們?nèi)切巫C明中常用的方法.
(1)請(qǐng)你先證明△ABC≌△CHA,并用一句話總結(jié)題中的結(jié)論;
(2)現(xiàn)將圖1中△ABC折疊(如圖3),點(diǎn)A與點(diǎn)D重合,折痕為EF,此時(shí)不難看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若圖2中△ABC也進(jìn)行這樣的折疊(如圖4),此時(shí)線段BE、CF、EF還有這樣的關(guān)系式嗎?若有,請(qǐng)證明;若沒有,請(qǐng)舉反例.
(3)在(2)的條件下,將圖3中的△DEF繞著點(diǎn)D旋轉(zhuǎn)(如圖5),射線DE、DF分別交AB、AC于點(diǎn)E、F,此時(shí)(2)中結(jié)論還成立嗎?請(qǐng)說明理由.圖4中的△DEF也這樣旋轉(zhuǎn)(如圖6),直接寫出上面的關(guān)系式是否成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點(diǎn)A、B在一個(gè)半徑為2的圓上,頂點(diǎn)C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動(dòng)的滾動(dòng).當(dāng)滾動(dòng)一周回到原位置時(shí),點(diǎn)C運(yùn)動(dòng)的路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以AB的中點(diǎn)O為圓心,OA為半徑的圓交AC于點(diǎn)D,E是BC的中點(diǎn),連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)若cos∠BAD=,BE=12,求OE的長;
(3)求證:BC2=2CDOE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)在同一線路上順次有三個(gè)景點(diǎn)A,B,C,甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C;乙花20分鐘時(shí)間排隊(duì)后乘觀光車先到景點(diǎn)B,在B處停留一段時(shí)間后,再步行到景點(diǎn)C.甲、乙兩人離景點(diǎn)A的路程s(米)關(guān)于時(shí)間t(分鐘)的函數(shù)圖像如圖所示.
(1)甲的速度是 米/分鐘;
(2)當(dāng)20≤t ≤30時(shí),求乙離景點(diǎn)A的路程s與t的函數(shù)表達(dá)式;
(3)乙出發(fā)后多長時(shí)間與甲在途中相遇?
(4)若當(dāng)甲到達(dá)景點(diǎn)C時(shí),乙與景點(diǎn)C的路程為360米,則乙從景點(diǎn)B步行到景點(diǎn)C的速度是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com