【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下結(jié)論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的結(jié)論有_____個(gè).
【答案】3
【解析】
先證明△AEB≌△AFC得∠EAB=∠FAC即可推出③正確,由△AEM≌△AFN即可推出①正確,由△CMD≌△BND可以推出②錯(cuò)誤,由△ACN≌△ABM可以推出④正確,由此即可得出結(jié)論.
解:在△AEB和△AFC中,
,
∴△AEB≌△AFC(AAS),
∴∠EAB=∠FAC,EB=CF,AB=AC,
∴∠EAM=∠FAN,故③正確,
在△AEM和△AFN中,
,
∴△AEM≌△AFN,
∴EM=FN,AM=AN,故①正確,
∵AC=AB,
∴CM=BN,
在△CMD和△BNC中,
,
∴△CMD≌△BND,
∴CD=DB,不能判斷CD=DN,故②錯(cuò)誤,
在△ACN和△ABM中,
,
∴△ACN≌△ABM,故④正確,
故①③④正確,
故答案為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=a.作BC邊的三等分點(diǎn)C1,使得CC1:BC1=1:2,過點(diǎn)C1作AC的平行線交AB于點(diǎn)A1,過點(diǎn)A1作BC的平行線交AC于點(diǎn)D1,作BC1邊的三等分點(diǎn)C2,使得C1C2:BC2=1:2,過點(diǎn)C2作AC的平行線交AB于點(diǎn)A2,過點(diǎn)A2作BC的平行線交A1C1于點(diǎn)D2;如此進(jìn)行下去,則線段AnDn的長度為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校計(jì)劃在某商店購買秋季運(yùn)動(dòng)會(huì)的獎(jiǎng)品,若買5個(gè)籃球和10個(gè)足球需花費(fèi)1150元,若買9個(gè)籃球和6個(gè)足球需花費(fèi)1170元.
(1)籃球和足球的單價(jià)各是多少元?
(2)實(shí)際購買時(shí),正逢該商店進(jìn)行促銷.所有體育用品都按原價(jià)的八折優(yōu)惠出售,學(xué)校購買了若干個(gè)籃球和足球,恰好花費(fèi)1760元.請(qǐng)直接寫出學(xué)校購買籃球和足球的個(gè)數(shù)各是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AEF=80°,且∠A=x°,∠C=y°,∠F=z°.若+|y-80-m|+|z-40|=0(m為常數(shù),且0<m<100)
(1) 求∠A、∠C的度數(shù)(用含m的代數(shù)式表示)
(2) 求證:AB∥CD
(3) 若∠A=40°,∠BAM=20°,∠EFM=10°,直線AM與直線FM交于點(diǎn)M,直接寫出∠AMF的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y= (x>0)圖象上一點(diǎn)P的橫坐標(biāo)是4,過點(diǎn)P作直線l交x軸于點(diǎn)A,交y軸負(fù)半軸于點(diǎn)B,且OA=OB.
(1)求直線l的函數(shù)解析式;
(2)過點(diǎn)P作直線l的垂線l1 , 交函數(shù)y= (x>0)圖象于點(diǎn)C,求△OPC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.
(1)請(qǐng)判斷AB與CD的位置關(guān)系,并說明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD.當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?并說明理由;
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外),∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?直接寫出結(jié)論,其數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子里有標(biāo)號(hào)分別為1,2,3,4,5,6的六個(gè)小球,這些小球除標(biāo)號(hào)數(shù)字外都相同.
(1)從盒中隨機(jī)摸出一個(gè)小球,求摸到標(biāo)號(hào)數(shù)字為奇數(shù)的小球的概率;
(2)甲、乙兩人用這六個(gè)小球玩摸球游戲,規(guī)則是:甲從盒中隨機(jī)摸出一個(gè)小球,記下標(biāo)號(hào)數(shù)字后放回盒里,充分搖勻后,乙再從盒中隨機(jī)摸出一個(gè)小球,并記下標(biāo)號(hào)數(shù)字.若兩次摸到小球的標(biāo)號(hào)數(shù)字同為奇數(shù)或同為偶數(shù),則判甲贏;若兩次摸到小球的標(biāo)號(hào)數(shù)字為一奇一偶,則判乙贏.請(qǐng)用列表法或畫樹狀圖的方法說明這個(gè)游戲?qū)住⒁覂扇耸欠窆剑?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB=5cm,AC⊥AB,BD⊥AB,AC=BD=4cm,點(diǎn)P在線段AB上以1cm/s的速度由A向B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),它們運(yùn)動(dòng)時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P速度相等,當(dāng)t=1,△ACP與△BPQ是否全等?請(qǐng)說明理由,并推導(dǎo)出此時(shí)線段PC和線段PQ的位置關(guān)系;
(2)如圖2,將圖1中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=α°”,其他條件不變,設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為xcm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com