【題目】如圖,已知的直徑,點上一點,連接,點關(guān)于的對稱點恰好落在上.

1)求證:;

2)過點的切線,交的延長線于點.如果,求的直徑.

【答案】1)見解析;(24

【解析】

1)由題意可知,根據(jù)同弧所對的圓心角相等得到,再根據(jù)同弧所對的圓心角和圓周角的關(guān)系得出,利用同位角相等兩直線平行,可得出POBC平行;

2)利用切線的性質(zhì)得到OC垂直于CD,從而得到OCAD,即可得到∠APO=COP,進一步得出∠APO=AOP,確定出為等邊三角形,點,點關(guān)于對稱,繼而得出為等邊三角形,可求出∠PCD30°,在直角三角形PCD中,利用30°所對的直角邊等于斜邊的一半可得出PDPC的一半,可得出PDAB的四分之一,即AB=4PD=4

解:(1)證明:∵點關(guān)于的對稱點恰好落在上.

,∴

又∵,

;

2)解:連接,

為圓的切線,∴,又,

,∴,

,∴,

為等邊三角形,,

又∵點,點關(guān)于對稱

也為等邊三角形,

,,

又∵,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地高速鐵路建設(shè)成功,一列動車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車均勻速行駛并同時出發(fā),設(shè)普通列車行駛的時間為(小時),兩車之間的阻離為(千米),圖中的折線表示之間的函數(shù)關(guān)系,則圖中的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究

1)如圖①,已知與直線,過于點,,的半徑為,則圓上一點的距離的最小值是______;

     

2)如圖②,在四邊形中,,,,過點作一條直線交邊,若平分四邊形的面積,求的長;

問題解決

3)如圖③所示,是由線段、、與弧圍成的花園的平面示意圖,,//,CDBC,點的中點,所對的圓心角為.管理人員想在上確定一點,在四邊形區(qū)域種植花卉,其余區(qū)域種植草坪,并過點修建一條小路,把四邊形分成面積相等且盡可能小的兩部分,分別種植不同的花卉.問是否存在滿足上述條件的小路?若存在,請求出的長,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乒乓球是我國的國球,比賽采用單局分制,分團體、單打、雙打等。在某站公開賽中,某直播平臺同時直播場男單四分之一決賽,四場比賽的球桌號分別為“”,“”,“”,“”(假設(shè)場比賽同時開始),小寧和父親準備一同觀看其中的一場比賽,但兩人的意見不統(tǒng)一,于是采用抽簽的方式?jīng)Q定,抽簽規(guī)則如下:將正面分別寫有數(shù)字“”,“”,“”,“”的四張卡片(除數(shù)字不同外,其余均相同)分別對應(yīng)球桌號“”,“”,“”,“”,卡片洗勻后背面朝上放在桌子上,父親先從中隨機抽取一張,小寧再從剩下的張卡片中隨機抽取一張,比較兩人所抽卡片上的數(shù)字,觀看較大的數(shù)字對應(yīng)球桌的比賽。

(1)下列事件中屬于必然事件的是

A.抽到的是小寧最終想要看的一場比賽的球桌號

B.抽到的是父親最終想要看的一場比賽的球桌號

C.小寧和父親抽到同一個球桌號

D.小寧和父親抽到的球桌號不一樣

(2)用列表法或樹狀圖法求小寧和父親最終觀看“T”球桌比賽的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)和二次函數(shù)圖象的頂點分別為,與軸分別相交于兩點(點在點的左邊)和兩點(點在點的左邊),

     

1)函數(shù)的頂點坐標為______;當二次函數(shù)值同時隨著的增大而增大時,則的取值范圍是_______

2)判斷四邊形的形狀(直接寫出,不必證明);

3)拋物線,均會分別經(jīng)過某些定點;

①求所有定點的坐標;

②若拋物線位置固定不變,通過平移拋物線的位置使這些定點組成的圖形為菱形,則拋物線應(yīng)平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,邊上一點,是線段上的動點,連接,以為斜邊在的下方作等腰連接從點出發(fā)運動至點停止的過程中,面積的最大值等于_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸相交于兩點,點坐標為,拋物線的對稱軸是直線

1)求拋物線的解析式;

2)點軸右側(cè)拋物線圖像上的一動點,設(shè)點的橫坐標為.

①是否存在這樣的點使得?若存在,求出的值;若不存在,請說明理由;

②若該動點在第一象限內(nèi),連接,當時,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形紙片中,,,折疊紙片使點落在邊上的處,拆痕為.過點,連接

1)求證:四邊形為菱形;

2)當點邊上移動時,折痕的端點也隨之移動;

①當點與點重合時(如圖2),求菱形的邊長;

②若限定、分別在邊上移動,求的內(nèi)切圓半徑的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光明中學(xué)八年級一班開展了讀一本好書的活動,委會對學(xué)生閱讀書籍的情況行了問卷調(diào)查,問卷設(shè)置了小說、戲劇、散文”“其他四個類別,每位同學(xué)僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.根據(jù)圖表提供的信息,回答下列問題:

1)八年級一班有多少名學(xué)生?

2)請補全頻數(shù)分布直方圖,在扇形統(tǒng)計圖中,戲劇類對應(yīng)的扇形圓心角是多少度?

3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了戲劇類,現(xiàn)從中任意選出名同學(xué)參加學(xué)校的戲劇社團,請用畫樹狀圖或列表的方法,求選取的人恰好是甲和丙的概率.

查看答案和解析>>

同步練習(xí)冊答案