【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點,且BE=DF.

(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=10,∠BAC=90°,求BE的長.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AD∥BC,且AD=BC,

∴AF∥EC,

∵BE=DF,

∴AF=EC,

∴四邊形AECF是平行四邊形


(2)解:∵四邊形AECF是菱形,

∴AE=EC,

∴∠1=∠2,

∵∠BAC=90°,

∴∠3=90°﹣∠2,∠4=90°﹣∠1,

∴∠3=∠4,

∴AE=BE,

∴BE=AE=CE= BC=5.


【解析】(1)利用平行四邊形的性質得出AF∥EC,進而得出AF=EC,進而求出即可;(2)利用菱形的性質以及三角形內角和定理得出∠1=∠2,進而求出∠3=∠4,再利用直角三角形的性質得出答案.
【考點精析】認真審題,首先需要了解平行四邊形的判定與性質(若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積),還要掌握菱形的性質(菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子里,裝有四個分別標有數(shù)字﹣1,﹣2,﹣3,﹣4的小球,它們的形狀、大小、質地等完全相同.小強先從盒子里隨機取出一個小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機取出一個小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結果;
(2)求小強、小華各取一次小球所確定的點(x,y)落在一次函數(shù)y=x﹣1圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1) +(π﹣1)0﹣4 + ﹣1)
(2) + ﹣(
(3)|2 ﹣3|﹣(﹣ 2+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F(xiàn)是正方形ABCD的邊AD上兩個動點,滿足AE=DF.連接CF交BD于點G,連接BE交AG于點H.若正方形的邊長為2,則線段DH長度的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在線段AB的同側作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學發(fā)現(xiàn)當射線AM,BN交于點C;且∠ACB=60°時,有以下兩個結論:
①∠APB=120°;②AF+BE=AB.
那么,當AM∥BN時:

(1)點點發(fā)現(xiàn)的結論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關系,并給予證明;
(2)設點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一坐標系中,正比例函數(shù)y=x與反比例函數(shù) 的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a,b,c均為實數(shù),若a>b,c≠0.下列結論不一定正確的是(
A.a+c>b+c
B.c﹣a<c﹣b
C.
D.a2>ab>b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,點D、E分別是兩腰AC、BC上的點,連接AE、BD相交于點O,∠1=∠2.
(1)求證:OD=OE;
(2)求證:四邊形ABED是等腰梯形;
(3)若AB=3DE,△DCE的面積為2,求四邊形ABED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】過三點A(2,2),B(6,2),C(4,5)的圓的圓心坐標為(
A.(4,
B.(4,3)
C.(5,
D.(5,3)

查看答案和解析>>

同步練習冊答案