【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機抽樣的方法進行問卷調(diào)查每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門對調(diào)查結(jié)果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖請結(jié)合圖中所給信息解答下列問題:

本次調(diào)查的學(xué)生共有______人,在扇形統(tǒng)計圖中,m的值是______

分別求出參加調(diào)查的學(xué)生中選擇繪畫和書法的人數(shù),并將條形統(tǒng)計圖補充完整.

該校共有學(xué)生2000人,估計該校約有多少人選修樂器課程?

【答案】(1)50; (2)選修繪畫的人數(shù)為10人,選修書法的人數(shù)為5人,條形統(tǒng)計圖見解析; (3)該校約有600人選修樂器課程.

【解析】

(1)根據(jù)選修舞蹈的人數(shù)與所占的百分比列式計算即可求得參加調(diào)查的學(xué)生總?cè)藬?shù),然后用選修樂器的人數(shù)除以參加調(diào)查的學(xué)生總?cè)藬?shù)得到m的值;

(2)用參加調(diào)查的學(xué)生總?cè)藬?shù)分別乘以選修繪畫和書法的所占百分比即可得到相應(yīng)的人數(shù),然后補全條形統(tǒng)計圖即可;

(3)用學(xué)生總數(shù)2000人乘以選修樂器所占百分比,即可得到答案.

(1)根據(jù)選修舞蹈的人數(shù)和所占百分比得:

本次調(diào)查的學(xué)生共有,

;

故答案為:50;

選修繪畫的人數(shù),選修書法的人數(shù),

如圖所示:

估計該校選修樂器課程的人數(shù)為(人).

答:該校約有600人選修樂器課程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六一兒童節(jié)前夕,蘄黃縣教育局準(zhǔn)備給留守兒童贈送一批學(xué)習(xí)用品,先對浠泉鎮(zhèn)浠泉小學(xué)的留守兒童人數(shù)進行抽樣統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)分別為6 名,7 名,8 名,10 名,12 名這五種情形,并將統(tǒng)計結(jié)果繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.

請根據(jù)上述統(tǒng)計圖,解答下列問題:

1)該校有多少個班級?并補全條形統(tǒng)計圖;

2)該校平均每班有多少名留守兒童?留守兒童人數(shù)的眾數(shù)是多少?

3)若該鎮(zhèn)所有小學(xué)共有60 個教學(xué)班,請根據(jù)樣本數(shù)據(jù),估計該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上

1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;寫出A1、B1、C1的坐標(biāo)。

2)畫出△ABC向下平移5個單位后的△A2B2C2,并求出平移過程中線段AC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,AB是⊙O的直徑,延長AB到點E,連接EC,使得∠BCE=BAC

(1)求證:EC是⊙O的切線;

(2)過點AADEC的延長線于點D,AD=5,DE=12,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一支蠟燭點燃以后,其長度與時間的函數(shù)圖象,請解答以下問題:

1)這支蠟燭點燃前的長度是多少cm?每小時燃燒是多少cm?

2)寫出的函數(shù)解析式,并求的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖1,在中,DE分別是AB、AC兩邊的中點,延長DE至點F,使,連結(jié)易知

探究:如圖2,AD的中線,BEAC于點E,交AD于點F,且,求證:

應(yīng)用:如圖3,在中,,,DE的中位線過點D、E,分別交邊BC于點F、G,過點A,分別與FDGE的延長線交于點M、N,則四邊形MFGN周長C的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸的正半軸交于點,與軸交于點,的面積為2,動點從點出發(fā),以每秒1個單位長度的速度在射線上運動,動點出發(fā),沿軸的正半軸與點同時以相同的速度運動,過軸交直線.

(1)求直線的解析式.

(2)當(dāng)點在線段上運動時,設(shè)的面積為,點運動的時間為秒,求的函數(shù)關(guān)系式(直接寫出自變量的取值范圍).

(3)過點軸交直線,在運動過程中(不與點重合),是否存在某一時刻(),使是等腰三角形?若存在,求出時間的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊上有一點(點不與點、點重合),過點作直線截,使截得的三角形與相似,滿足條件的直線共有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+yx相交于點A,與x軸交于點B.

(1)填空:A的坐標(biāo)是_______,B的坐標(biāo)是___________;

(2)直線y=﹣x+上有點P(m,n),且點P在第四象限,設(shè)△AOP的面積為S,請求出Sm的函數(shù)關(guān)系式;

(3)在直線OA上,是否存在一點D,使得△DOB是等腰三角形?如果存在,試求出所有符合條件的點D的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案