【題目】已知:在矩形ABCD中,AB=8,BC=12,四邊形EFGH的三個頂點E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.
(1)如圖1,當四邊形EFGH為正方形時,求△GFC的面積;
(2)如圖2,當四邊形EFGH為菱形時,設BF=x,△GFC的面積為S,求S關于x的函數(shù)關系式,并寫出函數(shù)的定義域.

【答案】
(1)解:如圖1,過點G作GM⊥BC,垂足為M.

由矩形ABCD可知:∠A=∠B=90°,

由正方形EFGH可知:

∠HEF=90°,EH=EF,

∴∠1+∠2=90°,

又∠1+∠3=90°,

∴∠3=∠2,

∴△AEH≌△BFE.

∴BF=AE=2,

同理可證:△MGF≌△BFE,

∴△MGF≌△AEH,

∴GM=AE=2,

又 FC=BC﹣BF=12﹣2=10,

∴SGFC= FCGM= ×10×2=10.


(2)解:如圖2,過點G作GM⊥BC,垂足為M,連接HF.

由矩形ABCD得:AD∥BC,

∴∠AHF=∠HFM,

由菱形EFGH得:EH∥FG,EH=FG,

∴∠1=∠2,

∴∠3=∠4,

又∠A=∠M=90°,EH=FG,

∴△MGF≌△AEH,

∴GM=AE=2,

又 BF=x,∴FC=12﹣x,

∴SGFC= FCGM= (12﹣x)2=12﹣x,

即:S=12﹣x,

定義域:


【解析】(1)只要證明△AEH≌△BFE.推出BF=AE=2,由△MGF≌△BFE,推出△MGF≌△AEH,求出FC、GM即可解決問題.(2)如圖2,過點G作GM⊥BC,垂足為M,連接HF,根據(jù)SGFC= FCGM,計算即可.
【考點精析】本題主要考查了菱形的性質和矩形的性質的相關知識點,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解不等式:3﹣2(x﹣1)<1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】溫度通常有兩種表示方法:華氏度(單位:℉)與攝氏度(單位:℃),已知華氏度數(shù)y與攝氏度數(shù)x之間是一次函數(shù)關系,如表列出了部分華氏度與攝氏度之間的對應關系:

攝氏度數(shù)x(℃)

0

35

100

華氏度數(shù)y(℉)

32

95

212


(1)選用表格中給出的數(shù)據(jù),求y關于x的函數(shù)解析式(不需要寫出該函數(shù)的定義域);
(2)已知某天的最低氣溫是﹣5℃,求與之對應的華氏度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列一元一次方程:

1 2

3 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列長度的三條線段,不能組成三角形的是(
A.3,8,4
B.4,9,6
C.15,20,8
D.9,15,8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的面積為20cm2 , 對角線交于點O;以AB、AO為鄰邊做平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊做平行四邊形AO1C2B;…;依此類推,則平行四邊形AO4C5B的面積為(
A. cm2
B. cm2
C. cm2
D. cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點(a,2)與點(b,﹣2)關于原點中心對稱,則a+b的值是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程kx2+(k+2)x+ =0有兩個不相等的實數(shù)根;
(1)求k的取值范圍;
(2)是否存在實數(shù)k,使方程的兩個實數(shù)根的倒數(shù)和等于0?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某創(chuàng)業(yè)團隊有研發(fā)、管理和操作三個小組,各組的日工資和人數(shù)如下表:

現(xiàn)從管理組分別抽調1人到研發(fā)組和操作組,調整后與調整前相比,下列說法中正確的有( )

①平均日工資增大 ②日工資的方差減小

③日工資的中位數(shù)不變 ④日工資的眾數(shù)不變

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習冊答案