【題目】在中,為直徑,弦交于點、,連接、,.
(1)如圖①,求的度數(shù);
(2)如圖②,弦交于點.在上取點,連接、和,使,求證:;
(3)如圖③,在(2)的條件下,,的直徑為,連接,,求的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)學(xué)習(xí)小組“陸月輝煌”最近正在進(jìn)行幾何圖形組合問題的研究.認(rèn)真研讀以下四個片段,并回答問題.
(片斷一)小陸說:將一塊足夠大的等腰直角三角板置于一個正方形中,直角頂點與對角線交點O重合,在轉(zhuǎn)動三角板的過程中我發(fā)現(xiàn)某些線段之間存在確定的數(shù)量關(guān)系.
如圖(1),若三角板兩條直角邊的外沿分別交正方形的邊AB、BC于點M、N,則①OM+ON=MB+NB;②.
請你判斷他的猜想是否正確?并證明你認(rèn)為正確的猜想.
(片斷二)小月說:將三角板中一個45°角的頂點和正方形的一個頂點重合放置,使得這個角的兩條邊與正方形的一組鄰邊有交點.
如圖(2),若以A為頂點的45°角的兩邊分別交正方形的邊BC、CD于點M、N,交對角線BD于點E、F.我發(fā)現(xiàn):BE2+DE2=2AE2,只要準(zhǔn)確旋轉(zhuǎn)圖(2)中的一個三角形就能證明這個結(jié)論.
請你寫出小月所說的具體的旋轉(zhuǎn)方式:______________________.
(片斷三)小輝說:將三角板的一個45°角放置在正方形的外部,同時角的兩邊恰好經(jīng)過正方形兩個相鄰的頂點.
如圖(3),設(shè)頂點為E的45°角位于正方形的邊AD上方,這個角的兩邊分別經(jīng)過點B、C,連接EA,ED.那么線段EB、EC、ED也存在確定的數(shù)量關(guān)系:(EB+ED)2=2EC2.
請你證明這個結(jié)論.
(片斷四)小煌說:在圖(2)中,作一個過點A、E、F的圓,交正方形的邊AB、AD于點G、H,如圖(4)所示.你知道線段DH、HG、GB三者之間的關(guān)系嗎?請直接寫出結(jié)論:________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將直角三角板的直角邊放在半圓的直徑上,直角頂點與直徑端點重合,已知,且的直角邊與半圓的半徑長均為2.現(xiàn)將直角三角板沿直徑的方向向右平移,將三角板平移后的三角形記為.
(1)如圖,當(dāng)平移到斜邊與半圓相切時,試求的長度(結(jié)果保留);
(2)設(shè)平移距離為,在直角三角形平移過程中,折線(包括端點)與半圓弧共有3個交點時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,中,是邊上一點,是的中點,過點作的平行線交的延長線于,且,連接.
(1)求證:是的中點;
(2)若,試判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2,其中正確的結(jié)論分別是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,內(nèi)接于,平分交于,過點作的切線分別交、的延長線于、,連接.
(1)求證:;
(2)連,若,求的值;
(3)若,且,求弦的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A在一次函數(shù)y=x位于第一象限的圖象上運動,點B在x軸正半軸上運動,在AB右側(cè)以它為邊作矩形ABCD,且AB=2,AD=1,則OD的最大值是( 。
A.B.+2C.+2D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com