【題目】如圖,ABD是O的內(nèi)接三角形,E是弦BD的中點,點C是O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.

(1)求證:BC是O的切線;

(2)若O的半徑為6,BC=8,求弦BD的長.

【答案】(1)詳見解析;(2)BD=9.6.

【解析】

試題(1)連接OB,由垂徑定理可得BE=DEOEBD, ,再由圓周角定理可得 ,從而得到OBE+∠ DBC=90°,命題得證.

(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.

試題解析:(1)證明:如下圖所示,連接OB.

E是弦BD的中點,BEDE,OEBD,

∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.

∵∠ DBC=∠ A,∴∠ BOE=∠ DBC

∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BCOB,∴ BC O的切線.

(2)解:OB=6,BC=8,BCOB ,

,∴

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于點AB(3,0),與y軸交于點C(0,3).

(1)求拋物線的解析式;

(2)若點M是拋物線上在x軸下方的動點,過MMNy軸交直線BC于點N,求線段MN的最大值;

(3)E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校教師開展了練一手好字的活動,校委會對部分教師練習字帖的情況進行了問卷調(diào)查,問卷設置了柳體”、“顏體”、”歐體其他類型,每位教師僅能選一項,根據(jù)調(diào)查的結果繪制了如下統(tǒng)計表:

類別

柳體

顏體

歐體

其他

合計

人數(shù)

4

10

6

占的百分比

0.5

0.25

1

根據(jù)圖表提供的信息解答下列問題:

(1)這次問卷調(diào)查了多少名教師?

(2)請你補全表格.

(3)在調(diào)查問卷中,甲、乙、丙、丁四位教師選擇了柳體,現(xiàn)從以上四位教師中任意選出2名教師參加學校的柳體興趣小組,請你用畫樹狀圖或列表的方法,求選出的2人恰好是乙和丙兩位教師的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,EBC邊的中點,點P在射線AD上,過PPFAEF,設PAx

(1)求證:△PFA∽△ABE;

(2)若以P,FE為頂點的三角形也與△ABE相似,試求x的值;

(3)試求當x取何值時,以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,菱形ABCD中,E、F分別是CD、CB上的點,且CECF;

(1)求證:△ABE≌△ADF

(2)若菱形ABCD中,AB4,∠C120°,∠EAF60°,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】佳佳調(diào)査了七年級400名學生到校的方式,根據(jù)調(diào)查結果繪制出統(tǒng)計圖的一部分如圖:

1)補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中表示步行的扇形圓心角的度數(shù);

3)估計在3000名學生中乘公交的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)班同學分成甲、乙兩組,開展四個城市建設知識競賽,滿分得5分,得分均為整數(shù).小馬虎根據(jù)競賽成績,繪制了如圖所示的統(tǒng)計圖.經(jīng)確認,扇形統(tǒng)計圖是正確的,條形統(tǒng)計圖也只有乙組成績統(tǒng)計有一處錯誤:

(1)指出條形統(tǒng)計圖中存在的錯誤,并求出正確值;

(2)若成績達到3分及以上為合格,該校九年級有800名學生,請估計成績未達到合格的有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+c(ab、c為常數(shù),且a≠0)xy的部分對應值如下表:

有下列結論:①a0;②4a2b+10;③x=﹣3是關于x的一元二次方程ax2+(b1)x+c0的一個根;④當﹣3≤x≤n時,ax2+(b1)x+c≥0.其中正確結論的個數(shù)為( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,,以為直徑作交邊于點,過點于點,延長的延長線于點

1)求證:的切線;

2)若,,求的長.

查看答案和解析>>

同步練習冊答案