【題目】如圖,正方形ABCD的邊長為4,E是BC邊的中點,點P在射線AD上,過P作PF⊥AE于F,設PA=x.
(1)求證:△PFA∽△ABE;
(2)若以P,F,E為頂點的三角形也與△ABE相似,試求x的值;
(3)試求當x取何值時,以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點.
【答案】(1)證明見解析;(2)滿足條件的x的值為2或5;(3)當x=4-或x=4+或8<x≤4+2時,⊙D與線段AE只有一個公共點.
【解析】
(1)根據正方形的性質和PF⊥AE易證三角形相似.
(2)由于對應關系不確定,所以應針對不同的對應關系分情況考慮:當∠PEF=∠EAB時,則得到四邊形ABEP為矩形,從而求得x的值;當∠PEF=∠AEB時,再結合△PFA∽△ABE,得到等腰△APE.再根據等腰三角形的三線合一得到F是AE的中點,運用勾股定理和相似三角形的性質進行求解.
(3)此題首先應針對點P的位置分為兩種大情況:點P在AD邊上時或當點P在AD的延長線上時.同時還要特別注意⊙D與線段AE只有一個公共點,不一定必須相切,只要保證和線段AE只有一個公共點即可.故求得相切時的情況和相交,但其中一個交點在線段AE外的情況即是x的取值范圍.
(1)證明:∵正方形ABCD,
∴AD∥BC.
∴∠ABE=90°.
∴∠PAF=∠AEB.
又∵PF⊥AE,
∴∠PFA=∠ABE=90°.
∴△PFA∽△ABE.
(2)解:情況1,當△EFP∽△ABE,且∠PEF=∠EAB時,
則有PE∥AB
∴四邊形ABEP為矩形.
∴PA=EB=2,即x=2.
情況2,當△PFE∽△ABE,且∠PEF=∠AEB時,
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴點F為AE的中點.
∵===,
∴EF=AE=.
∵=,即=,
∴PE=5,即x=5.
∴滿足條件的x的值為2或5.
(3)解:如圖,
作DH⊥AE,則⊙D與線段AE的距離d即為DH的長,可得d=
當點P在AD邊上時,⊙D的半徑r=DP=4﹣x;
當點P在AD的延長線上時,⊙D的半徑r=DP=x﹣4;
如圖1時,⊙D與線段AE相切,此時d=r,即=4-x,∴x=4-;
如圖2時,⊙D與線段AE相切,此時d=r,即=x-4,∴x=4+;
如圖3時,DA=PD,則PA=x=2DA=8
如圖4時,當PD=ED時,
∵DE==2,
∴PA=PD+AD=4+2,
∴當x=4-或x=4+或8<x≤4+2時,⊙D與線段AE只有一個公共點.
科目:初中數學 來源: 題型:
【題目】如圖,A1,A2,A3…,An,An+1是直線上的點,且OA1=A1A2=A2A3=…AnAn+1=2,分別過點A1,A2,A3…,An,An+1作l1的垂線與直線相交于點B1,B2,B3…,Bn,Bn+1,連接A1B2,B1A2,A2B3,B2A3…,AnBn+1,BnAn+1,交點依次為P1,P2,P3…,Pn,設△P1A1A2,△P2A2A3,△P3A3A4,…,△PnAnAn+1的面積分別為S1,S2,S3…,Sn,則Sn=______.(用含有正整數n的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示是二次函數y=ax2+bx+c(a≠0)圖象的一部分,直線x=﹣1是對稱軸,有下列判斷:①b﹣2a=0,②4a﹣2b+c<0,③a﹣b+c=﹣9a,④若(﹣3,y1),(,y2)是拋物線上的兩點,則y1<y2.其中正確的是( 。
A. ①②③B. ①③C. ①④D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c的圖象與x軸的交點的橫坐標分別為-1,3,則下列結論正確的個數有( )①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意x均有ax2+bx≥a+b.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數為( )
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線x,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按此做法進行下去,點A4的坐標為______,點An______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABD是⊙O的內接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在長方形ABCD中,AB=12cm,BC=10cm,點P從A出發(fā),沿A→B→C→D的路線運動,到D停止;點Q從D點出發(fā),沿D→C→B→A路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒lcm、2cm,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運動時間x(秒)的圖象.
(1)求出a值;
(2)設點P已行的路程為y1(cm),點Q還剩的路程為y2(cm),請分別求出改變速度后,y1、y2和運動時間x(秒)的關系式;
(3)求P、Q兩點都在BC邊上,x為何值時P、Q兩點相距3cm?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,橫坐標、縱坐標都為整數的點稱為整點.請你觀察圖中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3…每個正方形四條邊上的整點的個數.按此規(guī)律推算出正方形A10B10C10D10四條邊上的整點共有______個.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com