【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(﹣4,1),B(﹣1,1),C(﹣2,3).
(1)將△ABC向右平移1個單位長度,再向下平移3個單位長度后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O順時針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2;
(3)直接寫出以C1、B1、B2為頂點的三角形的形狀是 .
【答案】(1)詳見解析,點A1,B1,C1的坐標分別為(﹣3,﹣2),(0,﹣2),(﹣1,0);(2)詳見解析;(3)等腰直角三角形.
【解析】
(1)利用點平移的坐標特征寫出點A1,B1,C1的坐標,然后描點即可;
(2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點A、B、C的對應(yīng)點A2、B2、C2得到△A2B2C2;
(3)利用勾股定理的逆定理進行判斷.
解:(1)如圖,將△ABC向右平移1個單位長度,再向下平移3個單位長度,則△A1B1C1即為所作;點A1,B1,C1的坐標分別為(﹣3,﹣2),(0,﹣2),(﹣1,0)
(2)如圖,每個點都繞原點順時針旋轉(zhuǎn)90°,則△A2B2C2即為所作.
(3)∵C1B12=5,C1B22=5,B1B22=10,
∴C1B12+C1B22=B1B22,C1B1=C1B2,
∴以C1、B1、B2為頂點的三角形的形狀是等腰直角三角形.
故答案為等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=8cm,BC=16cm,動點P從點A開始沿AB運動,速度為2cm/s;動點Q從點B開始沿BC運動,速度為4cm/s.設(shè)P、Q兩點同時運動,運動時間為ts(0<t<4),當△QBP與△ABC相似時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是雙曲線y=(x>0)上的一動點,過A作AC⊥y軸,垂足為點C,作AC的垂直平分線交雙曲線于點B,交x軸于點D.當點A在雙曲線上從左到右運動時,對四邊形ABCD的面積的變化情況,小明列舉了四種可能:
①逐漸變小;
②由大變小再由小變大;
③由小變大再由大變小;
④不變.
你認為正確的是_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,小紅家陽臺上放置了一個曬衣架.如圖2是曬衣架的側(cè)面示意圖,立桿AB、CD相交于點O,B、D兩點立于地面,經(jīng)測量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條直線,且EF=32cm.
(1)求證:AC∥BD;
(2)求扣鏈EF與立桿AB的夾角∠OEF的度數(shù)(精確到0.1°);
(3)小紅的連衣裙穿在衣架后的總長度達到122cm,垂掛在曬衣架上是否會拖落到地面?請通過計算說明理由.
(參考數(shù)據(jù):sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科學(xué)計算器)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1:,點P、H、B、C、A在同一個平面上.點H、B、C在同一條直線上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于 度;
(2)求山坡A、B兩點間的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,兩建筑物的水平距離為24 m,從A點測得D點的俯角為60°,測得C點的仰角為40°,求這兩座建筑物的高.(≈1.732,tan 40°≈0.8391,精確到0.01 m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)請指出小明的作業(yè)(如圖)從哪一步開始出現(xiàn)錯誤,更正過來,并計算出正確結(jié)果;
(2)若a,b是不等式組的整數(shù)解(a<b),求(1)中分式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把a、b、c三個數(shù)按照從小到大排列,中間的數(shù)記作MID{a,b,c},直線y=kx+2k(k>0)與函數(shù)y=MID{,2x+1,-x+2}的圖象有且只有1個交點,則k的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+4x+5.
(1)用配方法將y=-x2+4x+5化成y=a(x﹣h)2+k的形式;
(2)指出拋物線的開口方向、對稱軸和頂點坐標;
(3)若拋物線上有兩點A(x1,y1),B(x2,y2),如果x1>x2>2,試比較y1與y2的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com