【題目】如圖,在平面直角坐標系中,直線y=x+3分別交x軸、y軸于A,C兩點,拋物線y=ax2+bx+c(a≠0),經(jīng)過A,C兩點,與x軸交于點B(1,0).
(1)求拋物線的解析式;
(2)點D為直線AC上一點,點E為拋物線上一點,且D,E兩點的橫坐標都為2,點F為x軸上的點,若四邊形ADEF是平行四邊形,請直接寫出點F的坐標;
(3)若點P是線段AC上的一個動點,過點P作x軸的垂線,交拋物線于點Q,連接AQ,CQ,求△ACQ的面積的最大值.
【答案】(1)y=﹣x2﹣2x+3;(2)(7,0);(3).
【解析】
試題分析:(1)將x=0代入直線的解析式求得點C(0,3),將y=0代入求得x=﹣3,從而得到點A(﹣3,0),設(shè)拋物線的解析式為y=a(x+3)(x﹣1),將點C的坐標代入可求得a=﹣1,從而得到拋物線的解析式為y=﹣x2﹣2x+3;
(2)將x=2分別代入直線和拋物線的解析式,求得點D(2,5)、E(2,﹣5),然后根據(jù)平行四邊形的對角線互相平分可求得點F的坐標;
(3)如圖2所示:設(shè)點P的坐標為(a,a+3),則點Q的坐標為(a,﹣a2﹣2a+3).QP=﹣a2﹣3a,由三角形的面積公式可知:△ACQ的面積=﹣然后利用配方法求得二次函數(shù)的最大值即可
解:(1)∵將x=0代入y=x+3,得y=3,
∴點C的坐標為(0,3).
∵將y=0代入y=x+3得到x=﹣3.
∴點A的坐標為(﹣3,0).
設(shè)拋物線的解析式為y=a(x+3)(x﹣1),將點C的坐標代入得:﹣3a=3.
解得:a=﹣1.
∴拋物線的解析式為y=﹣(x+3)(x﹣1).
整理得:y=﹣x2﹣2x+3;
(2)∵將x=2代入y=x+3得,y=5,
∴點D(2,5).
將x=2代入y=﹣x2﹣2x+3得:y=﹣5.
∴點E的坐標為(2,﹣5).
如圖1所示:
∵四邊形ADFE為平行四邊形,
∴點F的坐標為(7,0).
(3)如圖2所示:
設(shè)點P的坐標為(a,a+3),則點Q的坐標為(a,﹣a2﹣2a+3).
QP=﹣a2﹣2a+3﹣(a+3)=﹣a2﹣2a+3﹣a﹣3=﹣a2﹣3a.
∵△ACQ的面積=,
∴△ACQ的面積==﹣=(a)2+.
∴△ACQ的面積的最大值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2-2x-3與x軸交于A、B兩點.
(1)當0<x<3時,求y的取值范圍;
(2)點P為拋物線上一點,若S△PAB=10,求出此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)的三個景點A、B、C在同一線路上.甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙乘景區(qū)觀光車先到景點B,在B處停留一段時間后,再步行到景點C,甲、乙兩人同時到達景點C.甲、乙兩人距景點A的路程y(米)與甲出發(fā)的時間x(分)之間的函數(shù)圖象如圖所示.
(1)乙步行的速度為_ __米/分.
(2)求乙乘景區(qū)觀光車時y與x之間的函數(shù)關(guān)系式.
(3)甲出發(fā)多長時間與乙第一次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臺風是一種自然災(zāi)害,它以臺風中心為圓心,在周圍數(shù)十千米范圍內(nèi)形氣旋風暴,有極強的破壞力,此時某臺風中心在海域 B 處,在沿海城市 A 的正南方向 240 千米,其中心風力為12 級,每遠離臺風中心 25 千米,臺風就會減弱一級,如圖所示,該臺風中心正以 20 千米/時的速度沿 BC 方向移動.已知 AD⊥BC 且AD= AB,且臺風中心的風力不變,若城市所受風力達到或超過 4 級,則稱受臺風影響.試問:
(1)A 城市是否會受到臺風影響?請說明理由.
(2)若會受到臺風影響,那么臺風影響該城市的持續(xù)時間有多長?
(3)該城市受到臺風影響的最大風力為幾級?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個分別標有數(shù)字﹣1,﹣2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機摸出一個小球記下數(shù)字為y.
(1)小紅摸出標有數(shù)字3的小球的概率是 ;
(2)請用列表法或畫樹狀圖的方法表示出由x,y確定的點P(x,y)所有可能的結(jié)果,并求出點P(x,y)落在第三象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個長為2m,寬為2n的長方形,將該長方形沿圖中虛線用剪刀均分成四塊小長方形,然后按照圖2所示拼成一個正方形.
(1)使用不同方法計算圖2中小正方形的面積,可推出(m+n)2,(m-n)2,mn之間的等量關(guān)系為: ;
(2)利用(1)中的結(jié)論,解決下列問題:
①已知a-b=4,ab=5,求a+b的值;
②已知a>0,a-=2,求a+的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(6, 0),B(0, 4),點B關(guān)于x軸的對稱點為C點,點D在x軸的負半軸上,△ABD的面積是30.
(1)求點D坐標.
(2)若動點P從點B出發(fā),沿射線BC運動,速度為每秒1個單位,設(shè)P的運動時間為t秒,△APC的面積為S,求S與t的關(guān)系式.
(3)在(2)的條件下,同時點Q從D點出發(fā)沿x軸正方向以每秒2個單位速度勻速運動,若點R在過A點且平行于y軸的直線上,當△PQR為以PQ為直角邊的等腰直角三角形時,求滿足條件的t值,并直接寫出點R的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com