【題目】已知,如圖,點C在線段AB上,且AC=6cm,BC=14cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長度;
(2)在(1)中,如果AC=acm,BC=bcm,其它條件不變,你能猜測出MN的長度嗎?請說出你發(fā)現(xiàn)的結論,并說明理由.
科目:初中數學 來源: 題型:
【題目】閱讀下面材料: 在學習《圓》這一章時,老師給同學們布置了一道尺規(guī)作圖題:
小敏的作法如下:
如圖,
①鏈接op,做線段op的垂直平分線MN,交OP于點C
②以點C為圓心,CO的長為半徑作圓,交⊙O于A、B兩點
③作直線PA、PB所以直線PA,PB就是所求的切線
老師認為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據是;由此可證明直線PA,PB都是⊙O的切線,其依據是
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,二次函數y=﹣ +bx+c的圖象經過點A(1,0),且當x=0和x=5時所對應的函數值相等.一次函數y=﹣x+3與二次函數y=﹣ +bx+c的圖象分別交于B,C兩點,點B在第一象限.
(1)求二次函數y=﹣ +bx+c的表達式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】回答問題:
(1)已知∠AOB的度數為54°,在∠AOB的內部有一條射線OC,滿足∠AOC=∠COB,在∠AOB所在平面上另有一條射線OD,滿足∠BOD=∠AOC,如圖1和圖2所示,求∠COD的度數.
(2)已知線段AB長為12cm,點C是線段AB上一點,滿足AC=CB,點D是直線AB上滿足BD=AC.請畫出示意圖,求出線段CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當的降價措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數表達式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+bx+c與x軸只有一個交點M,與平行于x軸的直線l交于A、B兩點,若AB=3,則點M到直線l的距離為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉,每次翻轉60°,連續(xù)翻轉2017次,點B的落點依次為B1 , B2 , B3 , …,則B2017的坐標為( )
A.(1345,0)
B.(1345.5, )
C.(1345, )
D.(1345.5,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y=kx+b的圖象經過點A(1,1)和點B(1,3).求:
(1)求一次函數的表達式;
(2)求直線AB與坐標軸圍成的三角形的面積;
(3)請在x軸上找到一點P,使得PA+PB最小,并求出P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場為了吸引顧客,設立了可以自由轉動的轉盤(如圖,轉盤被均勻分為20份),并規(guī)定:顧客每購買200元的商品,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉轉盤,那么可以直接獲得購物券30元.
(1)求轉動一次轉盤獲得購物券的概率;
(2)轉轉盤和直接獲得購物券,你認為哪種方式對顧客更合算?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com