【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

【答案】
(1)解:根據(jù)題意,得y=(2400﹣2000﹣x)(8+4× ),

即y=﹣ x2+24x+3200


(2)解:由題意,得﹣ x2+24x+3200=4800.

整理,得x2﹣300x+20000=0.

解這個方程,得x1=100,x2=200.

要使百姓得到實惠,取x=200元.

∴每臺冰箱應降價200元


(3)解:對于y=﹣ x2+24x+3200=﹣ (x﹣150)2+5000,

當x=150時,

y最大值=5000(元).

所以,每臺冰箱的售價降價150元時,商場的利潤最大,最大利潤是5000元


【解析】(1)根據(jù)題意易求y與x之間的函數(shù)表達式.(2)已知函數(shù)解析式,設y=4800可從實際得x的值.(3)利用x=﹣ 求出x的值,然后可求出y的最大值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是直線AC上一點,OB是一條射線,OD平分∠AOB,OE∠BOC內(nèi)部,∠BOE∠EOC,∠DOE70°,求∠EOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上,AB兩點表示的數(shù)a,b滿足|a﹣6|+(b+12)2=0

(1)a=   ,b=   

(2)若小球MA點向負半軸運動、小球NB點向正半軸運動,兩球同時出發(fā),小球M運動的速度為每秒2個單位,當M運動到OB的中點時,N點也同時運動到OA的中點,則小球N的速度是每秒   個單位;

(3)若小球M、N保持(2)中的速度,分別從A、B兩點同時出發(fā),經(jīng)過   秒后兩個小球相距兩個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在平面直角坐標系中,直線lx軸交于點A1,如圖所示依次作正方形A1B1C1O、

正方形A2B2C2C1、…、正方形,使得點A1、A2、A3、…在直線l上,點C1、C2C3、…

y軸正半軸上,則點的坐標是_______________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明身高為1.6米,通過地面上的一塊平面鏡C,剛好能看到前方大樹的樹梢E,此時他測得俯角為45度,然后他直接抬頭觀察樹梢E,測得仰角為30度.求樹的高度.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,點C在線段AB上,且AC=6cm,BC=14cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長度;

(2)在(1)中,如果AC=acm,BC=bcm,其它條件不變,你能猜測出MN的長度嗎?請說出你發(fā)現(xiàn)的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列各式:

13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;

13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2

13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;

∴13+23+33+43+53=(______ )2= ______ .

根據(jù)以上規(guī)律填空:

(1)13+23+33+…+n3=(______ )2=[ ______ ]2

(2)猜想:113+123+133+143+153= ______ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某月份的日歷表如圖.任意圈出一橫行或一豎列相鄰的三個數(shù).這三個數(shù)的和不可能是( 。

A. 24 B. 42 C. 58 D. 66

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了解學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機調查了若干名學生,根據(jù)調查數(shù)據(jù)進行整理,繪制了如下的不完整統(tǒng)計圖.
請你根據(jù)以上的信息,回答下列問題:
(1)本次共調查了名學生,其中最喜愛戲曲的有人;在扇形統(tǒng)計圖中,最喜愛體育的對應扇形的圓心角大小是
(2)根據(jù)以上統(tǒng)計分析,估計該校2000名學生中最喜愛新聞的人數(shù).

查看答案和解析>>

同步練習冊答案