【題目】不等式組 的解集在數(shù)軸上表示為( ).
A.
B.
C.
D.

【答案】D
【解析】解:解2x+2>0,2x>-2,x>-1;
解-x≥-1,得x≤1,
則不等式組的解集為-1<x≤1.
在數(shù)軸上表示為:

故選D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一元一次不等式組的解法(解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒(méi)有公共部分,則這個(gè)不等式組無(wú)解 ( 此時(shí)也稱(chēng)這個(gè)不等式組的解集為空集 )),還要掌握在數(shù)軸上表示不等式組的解集(不等式組的解集可以在數(shù)軸上表示出來(lái);當(dāng)任何數(shù)x都不能使不等式同時(shí)成立,我們就說(shuō)這個(gè)不等式組無(wú)解或其解為空集)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下面算式,解答問(wèn)題:

……

(1)請(qǐng)求出1 3 5 7 9 11的結(jié)果為 ;

請(qǐng)求出1 3 5 7 9 29 的結(jié)果為 ;

(2)若n 表示正整數(shù),請(qǐng)用含 n 的代數(shù)式表示1 3 5 7 9 (2n 1) (2n 1) 的值為

(3)請(qǐng)用上述規(guī)律計(jì)算: 41 43 45 77 79 的值(要求寫(xiě)出詳細(xì)解答過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、CD為 O的直徑,弦AE//CD,連接BE交CD于點(diǎn)F,過(guò)點(diǎn)E作直線EP與CD的延長(zhǎng)線交于點(diǎn)P,使 PED= C.

(1)求證:PE是 O的切線;
(2)求證:ED平分 BEP;
(3)若 O的半徑為5,CF=2EF,求PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我省某工藝廠為全運(yùn)會(huì)設(shè)計(jì)了一款成本為每件20元的工藝品,投放市場(chǎng)試銷(xiāo)后發(fā)現(xiàn)每天的銷(xiāo)售量y(件)是售價(jià)x(元/件)的一次函數(shù)。當(dāng)售價(jià)為22元/件時(shí),每天銷(xiāo)售量為780件;當(dāng)售價(jià)為25元/件時(shí),每天銷(xiāo)售量為750件。
(1)求y與x的函數(shù)關(guān)系式;
(2)如果該工藝品售價(jià)最高不超過(guò)每件30元,那么售價(jià)定為每件多少元時(shí),工藝廠銷(xiāo)售該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=售價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y= (x>0)的圖像交矩形OABC的邊AB于點(diǎn)D,交邊BC于點(diǎn)E,且BE=2EC.若四邊形ODBE的面積為6,則k=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(A2013防城港)如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下: 甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷(  )

A.甲正確,乙錯(cuò)誤
B.乙正確,甲錯(cuò)誤
C.甲、乙均正確
D.甲、乙均錯(cuò)誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線 AB,CD 相交于點(diǎn)O,OE 平分∠AOD,OF⊥OC.

(1)圖中∠AOF 的余角是_____ _____(把符合條件的角都填出來(lái));

(2)如果∠AOC=120°,那么根據(jù)____ ______,可得∠BOD=__________°;

(3)如果∠1=32°,求∠2∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過(guò)8min時(shí),材料溫度降為600℃.煅燒時(shí)溫度y(℃)與時(shí)間x(min)成一次函數(shù)關(guān)系;鍛造時(shí),溫度y(℃)與時(shí)間x(min)成反比例函數(shù)關(guān)系(如圖).已知該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時(shí)y與x的函數(shù)關(guān)系式,并且寫(xiě)出自變量x的取值范圍;
(2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時(shí),須停止操作.那么鍛造的操作時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】第一中學(xué)組織七年級(jí)部分學(xué)生和老師到蘇州樂(lè)園開(kāi)展社會(huì)實(shí)踐活動(dòng),租用的客車(chē)有50座和30座兩種可供選擇.學(xué)校根據(jù)參加活動(dòng)的師生人數(shù)計(jì)算可知:若只租用30座客車(chē)x輛,還差5人才能坐滿;

1則該校參加此次活動(dòng)的師生人數(shù)為 (用含x的代數(shù)式表示);

2若只租用50座客車(chē),比只租用30座客車(chē)少用2輛,求參加此次活動(dòng)的師生至少有多少人?

3已知租用一輛30座客車(chē)往返費(fèi)用為400元,租用一輛50座客車(chē)往返費(fèi)用為600元,學(xué)校根據(jù)師生人數(shù)選擇了費(fèi)用最低的租車(chē)方案,總費(fèi)用為2200元,試求參加此次活動(dòng)的師生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案