【題目】如圖,反比例函數(shù)y= (x>0)的圖像交矩形OABC的邊AB于點(diǎn)D,交邊BC于點(diǎn)E,且BE=2EC.若四邊形ODBE的面積為6,則k=.

【答案】3
【解析】解:連接OB,
∵四邊形OABC是矩形,
∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,
∵D、E在反比例函數(shù)y=(x>0)的圖象上,
∴△OAD的面積=△OCE的面積,
∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=3,
∵BE=2EC,∴△OCE的面積=△OBE的面積=
∴k=3;
所以答案是:3.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解比例系數(shù)k的幾何意義(幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=8,sin∠BCD= ,CE平分∠BCD,交邊AD于點(diǎn)E,聯(lián)結(jié)BE并延長,交CD的延長線于點(diǎn)P.
(1)求梯形ABCD的周長;
(2)求PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示為( ).
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,BE平分∠ABCAC邊于點(diǎn)E,

(1)如圖1,過點(diǎn)EDEBCAB于點(diǎn)D,求證:BDE為等腰三角形;

(2)如圖2,延長BED,ADB =ABC, AFBDF,AD=2,BF=3,DF的長

(3)如圖3,AB=AC,AFBD,ACD=ABC,判斷BF、CD、DF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AB的垂直平分線DEBC的延長線于F,若∠F=30°,DE=1,EF的長是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示為( ).
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,點(diǎn)D、E、F分別在BC、AB、AC上,∠EDF=∠B.
(1)如圖1,

求證:DECD=DFBE
(2)D為BC中點(diǎn)如圖2,

連接EF.
①求證:ED平分∠BEF;
②若四邊形AEDF為菱形,求∠BAC的度數(shù)及 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知四邊形ABCD的四條邊相等,四個(gè)內(nèi)角都等于90°,點(diǎn)E是CD邊上一點(diǎn),F(xiàn)是BC邊上一點(diǎn),且∠EAF=45°.

(1)求證:BF+DE=EF;

(2)若AB=6,設(shè)BF=x,DE=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;

(3)過點(diǎn)A作AHFE于點(diǎn)H,如圖(2),當(dāng)FH=2,EH=1時(shí),求AFE的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動(dòng)點(diǎn),(不與點(diǎn)A、E重合),在AE同側(cè)分別作正ABC和正CDE,ADBE交于點(diǎn)O,ADBC交與點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.

求證:(1)AD=BE

(2)APC≌△BQC

(3)PCQ是等邊三角形.

查看答案和解析>>

同步練習(xí)冊答案