【題目】如圖,反比例函數(shù)y= (x>0)的圖像交矩形OABC的邊AB于點(diǎn)D,交邊BC于點(diǎn)E,且BE=2EC.若四邊形ODBE的面積為6,則k=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=8,sin∠BCD= ,CE平分∠BCD,交邊AD于點(diǎn)E,聯(lián)結(jié)BE并延長,交CD的延長線于點(diǎn)P.
(1)求梯形ABCD的周長;
(2)求PE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BE平分∠ABC交AC邊于點(diǎn)E,
(1)如圖1,過點(diǎn)E作DE∥BC交AB于點(diǎn)D,求證:△BDE為等腰三角形;
(2)如圖2,延長BE到D,∠ADB =∠ABC, AF⊥BD于F,AD=2,BF=3,求DF的長
(3)如圖3,若AB=AC,AF⊥BD,∠ACD=∠ABC,判斷BF、CD、DF的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交BC的延長線于F,若∠F=30°,DE=1,則EF的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,點(diǎn)D、E、F分別在BC、AB、AC上,∠EDF=∠B.
(1)如圖1,
求證:DECD=DFBE
(2)D為BC中點(diǎn)如圖2,
連接EF.
①求證:ED平分∠BEF;
②若四邊形AEDF為菱形,求∠BAC的度數(shù)及 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知四邊形ABCD的四條邊相等,四個(gè)內(nèi)角都等于90°,點(diǎn)E是CD邊上一點(diǎn),F(xiàn)是BC邊上一點(diǎn),且∠EAF=45°.
(1)求證:BF+DE=EF;
(2)若AB=6,設(shè)BF=x,DE=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(3)過點(diǎn)A作AH⊥FE于點(diǎn)H,如圖(2),當(dāng)FH=2,EH=1時(shí),求△AFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn),(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點(diǎn)O,AD與BC交與點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.
求證:(1)AD=BE
(2)△APC≌△BQC
(3)△PCQ是等邊三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com