【題目】如圖1,將正方形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上,其余各邊均與坐標(biāo)軸平行,直線lyx3沿x軸的負(fù)方向以每秒1個(gè)單位的速度平移,在平移的過(guò)程中,該直線被正方形ABCD的邊所截得的線段長(zhǎng)為m,平移的時(shí)間為t(秒),mt的函數(shù)圖象如圖2所示,則圖2b的值為(

A. 5B. 4C. 3D. 2

【答案】A

【解析】

根據(jù)題意可分析出當(dāng)t=2時(shí),l經(jīng)過(guò)點(diǎn)A,從而求出OA的長(zhǎng),l經(jīng)過(guò)點(diǎn)C時(shí),t=12,從而可求出a,由a的值可求出AD的長(zhǎng),再根據(jù)等腰直角三角形的性質(zhì)可求出BD的長(zhǎng),即b的值.

解:連接BD,如圖所示:

直線yx3中,令y0,得x3;令x0,得y=﹣3,

即直線yx3與坐標(biāo)軸圍成的OEF為等腰直角三角形,

∴直線l與直線BD平行,即直線l沿x軸的負(fù)方向平移時(shí),同時(shí)經(jīng)過(guò)B,D兩點(diǎn),

由圖2可得,t2時(shí),直線l經(jīng)過(guò)點(diǎn)A,

AO32×11,

A1,0),

由圖2可得,t12時(shí),直線l經(jīng)過(guò)點(diǎn)C,

∴當(dāng)t+27時(shí),直線l經(jīng)過(guò)B,D兩點(diǎn),

AD=(72×15,

∴在等腰RtABD中,BD,

即當(dāng)a7時(shí),b

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上A、B兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別為ab,且ab滿足|a+4|+2b1220

1)求a,b的值;

2)點(diǎn)C是數(shù)軸上一點(diǎn),其對(duì)應(yīng)的數(shù)是x

①若點(diǎn)C在點(diǎn)A,B之間,化簡(jiǎn)|x+4||x6|;

②若CB2CA,求x的值;

3)點(diǎn)M和點(diǎn)N分別同時(shí)從點(diǎn)O和點(diǎn)A出發(fā),分別以每秒2個(gè)單位長(zhǎng)度,每秒3個(gè)單位長(zhǎng)度的速度向數(shù)軸正方向運(yùn)動(dòng),與此同時(shí),點(diǎn)T以每秒5個(gè)單位長(zhǎng)度的速度從點(diǎn)B出發(fā),開(kāi)始向左運(yùn)動(dòng),遇到點(diǎn)M后立即返回向右運(yùn)動(dòng),遇到點(diǎn)N后立即返回向左運(yùn)動(dòng),與點(diǎn)M相遇后再立即返回,如此往返,直到MN兩點(diǎn)相遇時(shí),點(diǎn)T停止運(yùn)動(dòng),求點(diǎn)T運(yùn)動(dòng)的路程一共是多少個(gè)單位長(zhǎng)度?點(diǎn)T停止的位置所對(duì)應(yīng)的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定:a*b=,則下列等式中對(duì)于任意實(shí)數(shù) a、b、c 都成立的是( )

①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c

③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)

A. ①②③ B. ①②④ C. ①③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時(shí)測(cè)得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無(wú)觸礁危險(xiǎn)?請(qǐng)通過(guò)計(jì)算加以說(shuō)明.如果有危險(xiǎn),輪船自A處開(kāi)始至少沿東偏南多少度方向航行,才能安全通過(guò)這一海域?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)的一檔娛樂(lè)性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計(jì)了以下游戲:用不透明的白布包住三根顏色長(zhǎng)短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊(duì),否則互為反方隊(duì)員.

(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;

(2)請(qǐng)用畫(huà)樹(shù)狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊(duì)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】江夏區(qū)某出租車(chē)在某一天以江夏體育館為出發(fā)地在東西方向營(yíng)運(yùn),向東為正,向西為負(fù),行車(chē)?yán)锍?/span>(單位:km)依先后次序記錄如下:+9,-2-5-4,-12,+8,+3,-1,-4,+10

(1)將最后一名乘客送到目的地,出租車(chē)離江夏體育館出發(fā)點(diǎn)多遠(yuǎn)?

(2)直接寫(xiě)出該出租車(chē)在行駛過(guò)程中,離江夏體育館最遠(yuǎn)的距離是______.

(3)出租車(chē)按物價(jià)部門(mén)規(guī)定,行程不超過(guò)3km(3km),按起步價(jià)8元收費(fèi),若行程超過(guò)3km的,則超過(guò)的部分,每千米加收1.2元,該司機(jī)這天的營(yíng)業(yè)額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠加工某種茶葉,計(jì)劃一周生產(chǎn)千克,平均每天生產(chǎn)千克,由于各種原因?qū)嶋H每天產(chǎn)量與計(jì)劃量相比有出入,某周七天的生產(chǎn)情況記錄如下(超產(chǎn)為正、減產(chǎn)為負(fù)):

,,,,,,

)這一周的實(shí)際產(chǎn)量是多少千克?

)該廠規(guī)定工人工資參照平均產(chǎn)量計(jì)發(fā),每千克元.若超產(chǎn),則超產(chǎn)的部分每千克元;若低于平均產(chǎn)量,按實(shí)際產(chǎn)量計(jì)發(fā),而且每少千克扣除元,那么該工廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A,C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線y=–x+3AB,BC于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)M,N

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)Px軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案