【題目】如圖,在平面直角坐標系中,正三角形OAB的頂點B的坐標為(2,0),點A在第一象限內,將△OAB沿直線OA的方向平移至的位置,此時點的橫坐標為3,則點的坐標為
A. (4,) B. (3,) C. (4,) D. (3,)
【答案】A
【解析】分析:作AM⊥x軸于點M.根據(jù)等邊三角形的性質得出OA=OB=2,∠AOB=60°,在直角△OAM中利用含30°角的直角三角形的性質求出OM=OA=1,AM=OM=,則A(1,),直線OA的解析式為y=x,將x=3代入,求出y=3,那么A′(3,3),由一對對應點A與A′的坐標求出平移規(guī)律,再根據(jù)此平移規(guī)律即可求出點B′的坐標.
詳解:如圖,作AM⊥x軸于點M.
∵正三角形OAB的頂點B的坐標為(2,0),∴OA=OB=2,∠AOB=60°,∴OM=OA=1,AM=OM=,∴A(1,),∴直線OA的解析式為y=x,∴當x=3時,y=3,∴A′(3,3),∴將點A向右平移2個單位,再向上平移2個單位后可得A′,∴將點B(2,0)向右平移2個單位,再向上平移2個單位后可得B′,∴點B′的坐標為(4,2).
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代一部數(shù)學專著,其中第八卷《方程》記載:“今有五雀六燕,集稱之衝,雀俱重,燕俱輕,一雀一燕交而處,衡視平”,意思是“五只雀比六只燕重.但是將這群雀和這群燕互相交換一只以后,兩群鳥一樣重,如果假設一只雀重x兩,則用含x的式子表示一只燕的重量為_____兩.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在體育測試時,初三的一名高個子男生推鉛球,已知鉛球所經(jīng)過的路線是某二次函數(shù)圖象的一部分(如圖),若這個男生出手處A點的坐標為(0,2),鉛球路線的最高處B點的坐標為B(6,5).
(1)求這個二次函數(shù)的表達式;
(2)該男生把鉛球推出去多遠?(精確到0.01米).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的圖象反映的過程是:小強星期天從家跑步去體育場,在那里鍛煉了一會兒后又走到文具店去買筆,然后步行回家,其中x表示時間,y表示小強離家的距離,根據(jù)圖象回答下列問題.
(1)體育場離小強家有多遠?小強從家到體育場用了多長時間?
(2)體育場距文具店多遠?
(3)小強在文具店逗留了多長時間?
(4)小強從文具店回家的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過格點A,B,C作一圓弧,點B與圖中4×7方格中的格點的連線中,能夠與該圓弧相切的格點個數(shù)有
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副直角三角尺疊放如圖1所示,現(xiàn)將45°的三角尺ADE固定不動,將含30°的三角尺ABC繞頂點A順時針轉動,使BC邊與三角形ADE的一邊互相平行.則∠BAD(0°<∠BAD<180°)所有可能符合條件的度數(shù)為________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點E,F(xiàn)為DC的中點,連結EF、BF,下列結論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結論的個數(shù)共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把棱長為的若干個小正方體擺放成如圖所示的幾何體,然后在露出的表面上涂上顏色(不含底面)
該幾何體中有多少個小正方體?
畫出從正面看到的圖形;
寫出涂上顏色部分的總面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b、c滿足(a-)2++=0,
(1)求a、b、c的值.
(2)試問以a、b、c為邊能否構成直角三角形?若能構成,求出直角三角形周長;若不能構成直角三角形,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com