【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊AB上一點(diǎn),延長ADF使DFBE,連接CF

1)求證:∠BCE=∠DCF;

2)過點(diǎn)EEGCF,過點(diǎn)FFGCE,問四邊形CEGF是什么特殊的四邊形,并證明.

【答案】(1)見解析;(2) 四邊形CEGF是正方形,證明見解析.

【解析】

1)由正方形的性質(zhì)得到∠B=∠CDF90°,BCCD,根據(jù)全等三角形的判定和性質(zhì)即可得到結(jié)論;

2)根據(jù)已知條件得到四邊形CEGF是平行四邊形,根據(jù)全等三角形的性質(zhì)得到CECF,證得四邊形CEGF是菱形,求得∠ECF=∠BCD90°,于是得到結(jié)論.

1)證明:∵四邊形ABCD是正方形,

∴∠B=∠ADC=∠BCD90°,BCCD

∴∠B=∠CDF90°,

BCEDCF中,,

∴△BCE≌△DCFSAS),

∴∠BCE=∠DCF;

2)四邊形CEGF是正方形,

證明:∵EGCFFGCE,

∴四邊形CEGF是平行四邊形,

∵△BCE≌△DCF,

CECF,

∴四邊形CEGF是菱形,

∵∠BCE=∠DCF,

∴∠ECF=∠BCD90°,

∴四邊形CEGF是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形的兩個(gè)內(nèi)角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準(zhǔn)互余三角形”.

(1)若ABC準(zhǔn)互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準(zhǔn)互余三角形.試問在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得ABE也是準(zhǔn)互余三角形?若存在,請(qǐng)求出BE的長;若不存在,請(qǐng)說明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準(zhǔn)互余三角形,求對(duì)角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,AC6cm,BC8cm.點(diǎn)M從點(diǎn)A出發(fā),以每秒1cm的速度沿AC方向運(yùn)動(dòng):同時(shí)點(diǎn)N從點(diǎn)C出發(fā),以每秒2cm的速度沿CB方向運(yùn)動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)B時(shí),點(diǎn)M同時(shí)停止運(yùn)動(dòng).

1)運(yùn)動(dòng)幾秒時(shí),△CMN的面積為8cm2

2)△CMN的面積能否等于12cm2?若能,求出運(yùn)動(dòng)時(shí)間:若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖平面直角坐標(biāo)系中,直線ykx+1x軸交于點(diǎn)A點(diǎn),與y軸交于B點(diǎn),Pa,b)是這條直線上一點(diǎn),且a、bab)是方程x26x+80的兩根.Qx軸上一動(dòng)點(diǎn),N是坐標(biāo)平面內(nèi)一點(diǎn),以點(diǎn)P、B、QN四點(diǎn)為頂點(diǎn)的四邊形恰好是矩形,則點(diǎn)N的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為正方形ABCD的中心,AD1,BE平分∠DBCDC于點(diǎn)E,延長BC到點(diǎn)F,使BDBF,連結(jié)DFBE的延長線于點(diǎn)H,連結(jié)OHDC于點(diǎn)G,連結(jié)HC.則以下四個(gè)結(jié)論中:OHBF;②OGGH21;③GH;④∠CHF2EBC;⑤CH2HEHB.正確結(jié)論的個(gè)數(shù)為(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點(diǎn)為B(1,3),與軸的交點(diǎn)A在點(diǎn) (2,0)和(3,0)之間.以下結(jié)論:

;;;;⑤若,且

.其中正確的結(jié)論有

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是yx22x3.

(1)求該函數(shù)圖象與x軸,y軸的交點(diǎn)坐標(biāo)以及它的頂點(diǎn)坐標(biāo):

(2)根據(jù)(1)的結(jié)果在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中直線軸相交于點(diǎn),與反比例函數(shù)在第三象限內(nèi)的圖象相交于點(diǎn)。

1)求反比例函數(shù)的關(guān)系式;

2)將直線沿軸平移后與反比例函數(shù)圖象在第三象限內(nèi)交于點(diǎn),且的面積為8,求平移后的直線的函數(shù)關(guān)系式。

查看答案和解析>>

同步練習(xí)冊(cè)答案