【題目】如圖,拋物線y=x22x+c的頂點(diǎn)A在直線ly=x5上.

1)求拋物線頂點(diǎn)A的坐標(biāo);

2)設(shè)拋物線與y軸交于點(diǎn)B,與x軸交于點(diǎn)C、DC點(diǎn)在D點(diǎn)的左側(cè)),試判斷ABD的形狀;

3)在直線l上是否存在一點(diǎn)P,使以點(diǎn)P、AB、D為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】1A1,﹣4);

2ABD是直角三角形,理由見解析;

3)存在點(diǎn)P﹣2﹣7)或P4,﹣1),使以點(diǎn)A、B、DP為頂點(diǎn)的四邊形是平行四邊形.

【解析】試題分析:(1)先根據(jù)拋物線的解析式得出其對稱軸方程,由此得到頂點(diǎn)A的橫坐標(biāo),然后代入直線l的解析式中即可求出點(diǎn)A的坐標(biāo).

2)由A點(diǎn)坐標(biāo)可確定拋物線的解析式,進(jìn)而可得到點(diǎn)B的坐標(biāo).則AB、AD、BD三邊的長可得,然后根據(jù)邊長確定三角形的形狀.

3)若以點(diǎn)PA、BD為頂點(diǎn)的四邊形是平行四邊形,應(yīng)分①AB為對角線、②AD為對角線兩種情況討論,然后結(jié)合勾股定理以及邊長的等量關(guān)系列方程求出P點(diǎn)的坐標(biāo).

1頂點(diǎn)A的橫坐標(biāo)為,且頂點(diǎn)在y=x﹣5上,

當(dāng)x=1時,y=1-5=-4

∴A1,-4).

2)將A1-4)代入y=x2-2x+c,可得,1-2+c=-4,c=-3

∴y=x2-2x-3,

∴B0,-3

當(dāng)y=0時,x2-2x-3=0,x1=-1,x2=3

∴C-10),D3,0),

∵BD2=OB2+OD2=18,AB2=4-32+12=2,AD2=3-12+42=20,

∴BD2+AB2=AD2

∴∠ABD=90°,即△ABD是直角三角形.

3)由題意知:直線y=x-5y軸于點(diǎn)E0,-5),交x軸于點(diǎn)F50

∴OE=OF=5,

∵OB=OD=3

∴△OEF△OBD都是等腰直角三角形

∴BD∥l,即PA∥BD

則構(gòu)成平行四邊形只能是PADBPABD,如圖,

過點(diǎn)Py軸的垂線,過點(diǎn)Ax軸的垂線交過P且平行于x軸的直線于點(diǎn)G

設(shè)Px1,x1-5),則G1,x1-5

PG=|1-x1|,AG=|5-x1-4|=|1-x1|

PA=BD=3

由勾股定理得:

1-x12+1-x12=18,x12-2x1-8=0x1=-24

∴P-2,-7)或P4,-1),

存在點(diǎn)P-2,-7)或P4,-1)使以點(diǎn)A、B、D、P為頂點(diǎn)的四邊形是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

求出拋物線的對稱軸和頂點(diǎn)坐標(biāo);

在直角坐標(biāo)系中,直接畫出拋物線(注意:關(guān)鍵點(diǎn)要準(zhǔn)確,不必寫出畫圖象的過程);

根據(jù)圖象回答:

取什么值時,拋物線在軸的上方?

取什么值時,的值隨的值的增大而減?

根據(jù)圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點(diǎn)A按逆時針方向旋轉(zhuǎn)90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過點(diǎn)D.

(1)求∠BDF的大;

(2)求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,∠BAC=130°,AB的垂直平分線MEBC于點(diǎn)M,交AB于點(diǎn)E,AC的垂直平分線NFBC于點(diǎn)N,交AC于點(diǎn)F,則∠MAN為(

A.80°B.70°C.60°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC.AB=AC.∠BAC=36°.BD是∠ABC的平分線AC于點(diǎn)D,EAB的中點(diǎn),連接ED并延長,交BC的延長線于點(diǎn)F,連接AF.求證:(1)EF⊥AB; (2)△ACF為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,是邊上一點(diǎn),,垂足分別是,

求證:

,求證:四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校從兩名優(yōu)秀選手中選一名參加全市中小學(xué)運(yùn)動會的男子米跑項(xiàng)目,該校預(yù)先對這兩名選手測試了次,測試成績?nèi)缦卤?/span>

甲的成績(秒)

乙的成績(秒)

為了衡量這兩名選手米跑的水平,你選擇哪些統(tǒng)計(jì)量?請分別求出這些統(tǒng)計(jì)量的值.

你認(rèn)為選派誰比較合適?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2011?菏澤)如圖為拋物線y=ax2+bx+c的圖象,A、B、C為拋物線與坐標(biāo)軸的交點(diǎn),且OA=OC=1,則下列關(guān)系中正確的是( 。

A. a+b=﹣1 B. a﹣b=﹣1

C. b<2a D. ac<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在方格紙中

(1)請?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使A(2,3),C(6,2),并求出B點(diǎn)坐標(biāo);

(2)以原點(diǎn)O為位似中心,相似比為2,在第一象限內(nèi)將ABC放大,畫出放大后的圖形ABC;

(3)計(jì)算ABC的面積S.

查看答案和解析>>

同步練習(xí)冊答案