【題目】小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D( ,0),E(2 ,0),F(xiàn)( ,﹣ ).

(1)他們將△ABC繞C點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°得到△A1B1C1 . 請(qǐng)你寫出點(diǎn)A1 , B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線y=2 x2+bx+c上,請(qǐng)你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45°,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線y=x2上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo),請(qǐng)你直接寫出點(diǎn)P的所有坐標(biāo).

【答案】
(1)

解:A1(2﹣ ,1+ ),B1(2+ ,1+ ).

A1C和DF的位置關(guān)系是平行


(2)

解:∵△ABC繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°后的三角形即為△DEF,

∴①當(dāng)拋物線經(jīng)過點(diǎn)D、E時(shí),根據(jù)題意可得:

,

解得

∴y= x2﹣12x+

②當(dāng)拋物線經(jīng)過點(diǎn)D、F時(shí),根據(jù)題意可得:

解得

∴y= x2﹣11x+ ;

③當(dāng)拋物線經(jīng)過點(diǎn)E、F時(shí),根據(jù)題意可得:

,

解得

∴y= x2﹣13x+


(3)

解:在旋轉(zhuǎn)過程中,可能有以下情形:

①順時(shí)針旋轉(zhuǎn)45°,點(diǎn)A、B落在拋物線上,如答圖1所示:

易求得點(diǎn)P坐標(biāo)為(0, );

②順時(shí)針旋轉(zhuǎn)45°,點(diǎn)B、C落在拋物線上,如答圖2所示:

設(shè)點(diǎn)B′,C′的橫坐標(biāo)分別為x1,x2

易知此時(shí)B′C′與一、三象限角平分線平行,∴設(shè)直線B′C′的解析式為y=x+b,

聯(lián)立y=x2與y=x+b得:x2=x+b,即x2﹣x﹣b=0,

∴x1+x2=1,x1x2=﹣b.

∵B′C′=1,∴根據(jù)題意易得:|x1﹣x2|= ,

∴(x1﹣x22= ,即(x1+x22﹣4x1x2=

∴1+4b= ,解得b=-

∴x2﹣x+ =0,解得x= 或x=

∵點(diǎn)C′的橫坐標(biāo)較小,∴x=

當(dāng)x= 時(shí),y=x2=

∴P( , );

③順時(shí)針旋轉(zhuǎn)45°,點(diǎn)C、A落在拋物線上,如答圖3所示:

設(shè)點(diǎn)C′,A′的橫坐標(biāo)分別為x1,x2

易知此時(shí)C′A′與二、四象限角平分線平行,∴設(shè)直線C′A′的解析式為y=﹣x+b,

聯(lián)立y=x2與y=﹣x+b得:x2=﹣x+b,即x2+x﹣b=0,

∴x1+x2=﹣1,x1x2=﹣b.

∵C′A′=1,∴根據(jù)題意易得:|x1﹣x2|= ,

∴(x1﹣x22= ,即(x1+x22﹣4x1x2=

∴1+4b= ,解得b=-

∴x2+x+ =0,解得x= 或x=

∵點(diǎn)C′的橫坐標(biāo)較大,∴x=

當(dāng)x= 時(shí),y=x2= ,

∴P( );

④逆時(shí)針旋轉(zhuǎn)45°,點(diǎn)A、B落在拋物線上.

因?yàn)槟鏁r(shí)針旋轉(zhuǎn)45°后,直線A′B′與y軸平行,因此,與拋物線最多只能有一個(gè)交點(diǎn),故此種情形不存在;

⑤逆時(shí)針旋轉(zhuǎn)45°,點(diǎn)B、C落在拋物線上,如答圖4所示:

與③同理,可求得:P( , );

⑥逆時(shí)針旋轉(zhuǎn)45°,點(diǎn)C、A落在拋物線上,如答圖5所示:

與②同理,可求得:P( , ).

綜上所述,點(diǎn)P的坐標(biāo)為:(0, ),( , ),( , ),( ,


【解析】(1)由旋轉(zhuǎn)性質(zhì)及等腰直角三角形邊角關(guān)系求解;(2)首先明確△ABC繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°后的三角形即為△DEF,然后分三種情況進(jìn)行討論,分別計(jì)算求解;(3)旋轉(zhuǎn)方向有順時(shí)針、逆時(shí)針兩種可能,落在拋物線上的點(diǎn)有點(diǎn)A和點(diǎn)B、點(diǎn)B和點(diǎn)C、點(diǎn)C和點(diǎn)D三種可能,因此共有六種可能的情形,需要分類討論,避免漏解.
【考點(diǎn)精析】本題主要考查了平移的性質(zhì)和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握①經(jīng)過平移之后的圖形與原來的圖形的對(duì)應(yīng)線段平行(或在同一直線上)且相等,對(duì)應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對(duì)應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比梯形的定義,我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.

(1)已知:如圖1,四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):
①小紅畫了一個(gè)“等對(duì)角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立.請(qǐng)你證明此結(jié)論;
②由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例.
(3)已知:在“等對(duì)角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求對(duì)角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)y=kx,是否存在實(shí)數(shù)k,使得代數(shù)式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化簡為x4?若能,請(qǐng)求出所有滿足條件的k的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某區(qū)九年級(jí)學(xué)生身體素質(zhì)情況,該區(qū)從全區(qū)九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次體育考試科目測試(把測試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀:B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測試結(jié)果繪成了如圖兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生是;
(2)求圖1中∠α的度數(shù)是°,把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該區(qū)九年級(jí)有學(xué)生3500名,如果全部參加這次體育科目測試,請(qǐng)估計(jì)不及格的人數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x﹣交x軸于點(diǎn)A,交y軸于點(diǎn)C,直線y=x﹣5交x軸于點(diǎn)B,在平面內(nèi)有一點(diǎn)E,其坐標(biāo)為(4,),連接CB,點(diǎn)K是線段CB的中點(diǎn),另有兩點(diǎn)M,N,其坐標(biāo)分別為(a,0),(a+1,0).將K點(diǎn)先向左平移 個(gè)單位,再向上平移個(gè)單位得K′,當(dāng)以K′,E,M,N四點(diǎn)為頂點(diǎn)的四邊形周長最短時(shí),a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市團(tuán)委舉辦“我的中國夢”為主題的知識(shí)競賽,甲、乙兩所學(xué)校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為70分、80分、90分、100分,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下不完整的統(tǒng)計(jì)圖表:

乙校成績統(tǒng)計(jì)表

分?jǐn)?shù)/分

人數(shù)/人

70

7

80

90

1

100

8

(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為________;

(2)請(qǐng)你將圖②補(bǔ)充完整;

(3)求乙校成績的平均分;

(4)經(jīng)計(jì)算知s2=135,s2=175,請(qǐng)你根據(jù)這兩個(gè)數(shù)據(jù),對(duì)甲、乙兩校成績作出合理評(píng)價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,直線y=﹣x+3與y=3x﹣5相交于C點(diǎn),分別與x軸交于A、B兩點(diǎn).P、Q分別為直線y=﹣x+3與y=3x﹣5上的點(diǎn).
(1)求△ABC的面積;
(2)若P、Q關(guān)于原點(diǎn)成中心對(duì)稱,求P點(diǎn)的坐標(biāo);
(3)若△QPC≌△ABC,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)分別在邊DC,AB上,DE=BF,把平行四邊形沿直線EF折疊,使得點(diǎn)B,C分別落在B′,C′處,線段EC′與線段AF交于點(diǎn)G,連接DG,B′G.
求證:
(1)∠1=∠2;
(2)DG=B′G.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(5,1). ①畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1 , 并寫出點(diǎn)C1的坐標(biāo);
②連結(jié)BC1 , 在坐標(biāo)平面的格點(diǎn)上確定一個(gè)點(diǎn)P,使△B C1P是以B C1為底的等腰直角三角形,畫出△B C1P,并寫出所有P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案