【題目】設(shè)y=kx,是否存在實(shí)數(shù)k,使得代數(shù)式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化簡(jiǎn)為x4?若能,請(qǐng)求出所有滿足條件的k的值;若不能,請(qǐng)說明理由.

【答案】解:能; (x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2
=(4x2﹣y2)(x2﹣y2+3x2
=(4x2﹣y22 ,
當(dāng)y=kx,原式=(4x2﹣k2x22=(4﹣k22x4 ,
令(4﹣k22=1,解得k=± 或±
即當(dāng)k=± 或± 時(shí),原代數(shù)式可化簡(jiǎn)為x4
【解析】先利用因式分解得到原式=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y22 , 再把當(dāng)y=kx代入得到原式=(4x2﹣k2x22=(4﹣k2)x4 , 所以當(dāng)4﹣k2=1滿足條件,然后解關(guān)于k的方程即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用因式分解的應(yīng)用的相關(guān)知識(shí)可以得到問題的答案,需要掌握因式分解是整式乘法的逆向變形,可以應(yīng)用與數(shù)字計(jì)算、求值、整除性問題、判斷三角形的形狀、解方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E,F(xiàn)同時(shí)由A,C兩點(diǎn)出發(fā),分別沿AB,CB方向向點(diǎn)B勻速移動(dòng)(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過t秒△DEF為等邊三角形,則t的值為(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,自左至右,第1個(gè)圖由1個(gè)正六邊形、6個(gè)正方形和6個(gè)等邊三角形組成;第2個(gè)圖由2個(gè)正六邊形、11個(gè)正方形和10個(gè)等邊三角形組成;第3個(gè)圖由3個(gè)正六邊形、16個(gè)正方形和14個(gè)等邊三角形組成;按照此規(guī)律,第個(gè)圖中正方形和等邊三角形的個(gè)數(shù)之和為 個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AD∥BC,AB⊥AD,點(diǎn)E,點(diǎn)F分別在射線AD,射線BC上.若點(diǎn)E與點(diǎn)B關(guān)于AC對(duì)稱,點(diǎn)E與點(diǎn)F關(guān)于BD對(duì)稱,AC與BD相交于點(diǎn)G,則(
A.1+tan∠ADB=
B.2BC=5CF
C.∠AEB+22°=∠DEF
D.4cos∠AGB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)布袋中裝有只有顏色不同的a(a>12)個(gè)球,分別是2個(gè)白球,4個(gè)黑球,6個(gè)紅球和b個(gè)黃球,從中任意摸出一個(gè)球,把摸出白球,黑球,紅球的概率繪制成統(tǒng)計(jì)圖(未繪制完整).請(qǐng)補(bǔ)全該統(tǒng)計(jì)圖并求出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(2,2)關(guān)于直線y=k(k>0)的對(duì)稱點(diǎn)恰好落在x軸的正半軸上,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)B,不含端點(diǎn)C),連接AD,過點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D移動(dòng)的過程中,BE的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D( ,0),E(2 ,0),F(xiàn)( ,﹣ ).

(1)他們將△ABC繞C點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°得到△A1B1C1 . 請(qǐng)你寫出點(diǎn)A1 , B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線y=2 x2+bx+c上,請(qǐng)你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45°,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線y=x2上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo),請(qǐng)你直接寫出點(diǎn)P的所有坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①,BP、CP分別平分△ABC的外角∠CBD、∠BCE,BQ、CQ分別平分∠PBC、∠PCB,BM、CN分別是∠PBD、∠PCE的角平分線.

(1)當(dāng)∠BAC=40°時(shí),∠BPC=   ,∠BQC=   ;

(2)當(dāng)BM∥CN時(shí),求∠BAC的度數(shù);

(3)如圖,當(dāng)∠BAC=120°時(shí),BM、CN所在直線交于點(diǎn)O,直接寫出∠BOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案