【題目】如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規(guī)律,第個圖中正方形和等邊三角形的個數(shù)之和為 個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校課外興趣小組從某市七年級學(xué)生中抽取2000人做了如下問卷調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩幅統(tǒng)計圖.
問卷
你平時喝飲料嗎?( )
A.不喝 B.喝
請選擇B選項的同學(xué)回答下面問題:
請您減少喝飲料的數(shù)量,將節(jié)省下來的錢捐給希望工程,您愿意平均每月少喝( )
A.0瓶 B.1瓶
C.2瓶 D.2瓶以上
根據(jù)上述信息,解答下列問題:
(1)求條形圖中n的值.
(2)如果每瓶飲料平均3元錢,“少喝2瓶以上”按少喝3瓶計算:
①這2000名學(xué)生一個月少喝飲料能節(jié)省多少錢捐給希望工程?
②按上述統(tǒng)計結(jié)果估計,該市七年級6萬名學(xué)生一個月少喝飲料大約能節(jié)省多少錢捐給希望工程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各題計算正確的是 ( )
A. (ab﹣1)·(﹣4ab2)=﹣4a2b3﹣4ab2 B. (3x2+xy﹣y2)·3x2=9x4+3x3y﹣y2
C. (﹣3a)·(a2﹣2a+1)=﹣3a3+6a2 D. (﹣2x)·(3x2﹣4x﹣2)=﹣6x3+8x2+4x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比梯形的定義,我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)在探究“等對角四邊形”性質(zhì)時:
①小紅畫了一個“等對角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時她發(fā)現(xiàn)CB=CD成立.請你證明此結(jié)論;
②由此小紅猜想:“對于任意‘等對角四邊形’,當(dāng)一組鄰邊相等時,另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例.
(3)已知:在“等對角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在⊙O的直徑AB上,AB=6,AC=1.點P為⊙O上的任意一點,當(dāng)∠OPC取最大值時,則△OCP的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某市2013年企業(yè)用水量x(噸)與該月應(yīng)交的水費y(元)之間的函數(shù)關(guān)系如圖所示.
(1)當(dāng)x≥50時,求y關(guān)于x的函數(shù)關(guān)系式;
(2)若某企業(yè)2013年10月份的水費為620元,求該企業(yè)2013年10月份的用水量;
(3)為貫徹省委“五水共治”發(fā)展戰(zhàn)略,鼓勵企業(yè)節(jié)約用水,該市自2014年1月開始對月用水量超過80噸的企業(yè)加收污水處理費,規(guī)定:若企業(yè)月用水量x超過80噸,則除按2013年收費標(biāo)準(zhǔn)收取水費外,超過80噸部分每噸另加收 元,若某企業(yè)2014年3月份的水費和污水處理費共600元,求這個企業(yè)該月的用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為統(tǒng)籌安排大課間體育活動,在各班隨機選取了一部分學(xué)生,分成四類活動:“籃球”、“羽毛球”、“乒乓球”、“其他”進(jìn)行調(diào)查,整理收集到的數(shù)據(jù),繪制成如下的兩幅統(tǒng)計圖.
(1)學(xué)校采用的調(diào)查方式是;學(xué)校共選取了名學(xué)生;
(2)補全統(tǒng)計圖中的數(shù)據(jù):條形統(tǒng)計圖中羽毛球人、乒乓球人、其他人、扇形統(tǒng)計圖中其他%;
(3)該校共有1100名學(xué)生,請估計喜歡“籃球”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)y=kx,是否存在實數(shù)k,使得代數(shù)式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化簡為x4?若能,請求出所有滿足條件的k的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,直線y=﹣x+3與y=3x﹣5相交于C點,分別與x軸交于A、B兩點.P、Q分別為直線y=﹣x+3與y=3x﹣5上的點.
(1)求△ABC的面積;
(2)若P、Q關(guān)于原點成中心對稱,求P點的坐標(biāo);
(3)若△QPC≌△ABC,求Q點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com