【題目】為了從甲、乙兩名選手中選拔一人參加射擊比賽,現(xiàn)對他們進行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計圖表:

甲、乙射擊成績統(tǒng)計表

平均數(shù)

中位數(shù)

方差

命中10環(huán)的次數(shù)

7

1

(1)請補全上述圖表(請直接在表中填空和補全折線圖);

(2)如果規(guī)定成績較穩(wěn)定者勝出,你認為誰將勝出?說明你的理由;

(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?

【答案】(1)見解析;(2)甲勝出;(3)見解析.

【解析】試題分析:1)根據(jù)折線統(tǒng)計圖列舉出乙的成績,計算出甲的中位數(shù),方差,以及乙平均數(shù),中位數(shù)及方差,補全即可;
2)計算出甲乙兩人的方差,比較大小即可做出判斷;
3)希望甲勝出,規(guī)則改為9環(huán)與10環(huán)的總數(shù)大的勝出,因為甲9環(huán)與10環(huán)的總數(shù)為4環(huán).

試題解析:(1)如圖所示.

甲、乙射擊成績統(tǒng)計表

平均數(shù)

中位數(shù)

方差

命中10環(huán)的次數(shù)

7

7

4

0

7

7.5

5.4

1

(2)由甲的方差小于乙的方差,甲比較穩(wěn)定,故甲勝出.

(3)如果希望乙勝出,應(yīng)該制定的評判規(guī)則為:平均成績高的勝出;如果平均成績相同,則隨著比賽的進行,發(fā)揮越來越好者或命中滿環(huán)(10環(huán))次數(shù)多者勝出.因為甲、乙的平均成績相同,隨著比賽的進行,乙的射擊成績越來越好(回答合理即可)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式:

13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;

13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;

13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;

∴13+23+33+43+53=(______ )2= ______ .

根據(jù)以上規(guī)律填空:

(1)13+23+33+…+n3=(______ )2=[ ______ ]2

(2)猜想:113+123+133+143+153= ______ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,設(shè)一質(zhì)點MP0(1,0)處向上運動1個單位至P1(1,1),然后向左運動2個單位至P2處,再向下運動3個單位至P3處,再向右運動4個單位至P4處,再向上運動5個單位至P5處,……如此繼續(xù)運動下去.設(shè)Pn(xn,yn),n=1、2、3、……,則x1x2+……+x2014x2015的值為(

A. 1 B. 3 C. -1 D. 2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我市某中學(xué)在創(chuàng)建“特色校園”的活動中,將奉校的辦學(xué)理念做成宣傳牌(CD),放置在教學(xué)樓的頂部(如圖所示)該中學(xué)數(shù)學(xué)活動小組在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿坡面AB向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度為i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)

(1)求點B距水平而AE的高度BH;
(2)求宣傳牌CD的高度.
(結(jié)果精確到0.1米.參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩臺機床同時生產(chǎn)一種零件,在10天中,兩臺機床每天出次品的數(shù)量如下表:

1

1

0

2

1

3

2

1

1

0

0

2

2

0

3

1

0

1

3

1

(1)分別計算兩組數(shù)據(jù)的平均數(shù)和方差;

(2)從計算的結(jié)果來看,在10天中,哪臺機床出次品的平均數(shù)較小?哪臺機床出次品的波動較小?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,EF∥AD,M,N是線段EF的六等分點,若把該正方形紙片卷成一個圓柱,使點A與點D重合,此時,底面圓的直徑為10cm,則圓柱上M,N兩點間的距離是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中, ,點E是邊BC上的動點不與點重合,以AE為邊作,使得,射線AF交邊CD于點F

如圖1,當(dāng)點E是邊CB的中點時,判斷并證明線段之間的數(shù)量關(guān)系;

如圖2,當(dāng)點E不是邊BC的中點時,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠A=90°,AB=AC , BC=63cm,現(xiàn)沿底邊依次從下往上裁剪寬度均為3cm的矩形紙條,如圖所示,已知剪得的紙條中有一張是正方形,則這張正方形紙條是從下往上數(shù)第張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣州火車南站廣場計劃在廣場內(nèi)種植A,B兩種花木共 6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵.

(1)A,B兩種花木的數(shù)量分別是多少棵?

(2)如果園林處安排26人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務(wù)?

查看答案和解析>>

同步練習(xí)冊答案