【題目】如圖,已知AC=6,BC=8,AB=10,以點(diǎn)C為圓心,4為半徑作圓.點(diǎn)D是⊙C上的一個動點(diǎn),連接AD、BD,則AD+BD的最小值為__________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分別以點(diǎn)A,C為圓心,大于AC長為半徑作弧,兩弧交于點(diǎn)E,射線BE交AD于點(diǎn)F,交AC于點(diǎn)O.若點(diǎn)O恰好是AC的中點(diǎn),則CD的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面內(nèi)拋物線和一點(diǎn)過點(diǎn)作直線,若直線與該拋物線有且只有一個交點(diǎn),則這樣的直線的條數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)經(jīng)過點(diǎn)(﹣1,0),且滿足4a+2b+c>0,有下列結(jié)論:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正確結(jié)論的個數(shù)是( 。
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的表達(dá)式;
(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BCD的面積最大時,求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),N是線段EF上一動點(diǎn),M(m,0)是x軸上一動點(diǎn),若∠MNC=90°,直接寫出實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).
(1)求拋物線的解析式;
(2)如圖2,點(diǎn)P為直線BD上方拋物線上一點(diǎn),若,請求出點(diǎn)P的坐標(biāo).
(3)如圖3,M為線段AB上的一點(diǎn),過點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,若△DNM∽△BMD,請求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示.
①線段DG與BE之間的數(shù)量關(guān)系是 ;
②直線DG與直線BE之間的位置關(guān)系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時,上述結(jié)論是否成立,并說明理由.
(3)應(yīng)用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年新冠病毒在全球蔓延,口罩成為抗擊病毒傳播的有效物資,某廠需要生產(chǎn)一批口罩,該廠有甲、乙兩種型號的生產(chǎn)機(jī)器,若用甲機(jī)器單獨(dú)完成這批訂單需要消耗原料費(fèi)76萬元,若用乙機(jī)器單獨(dú)完成需要消耗原料費(fèi)26萬元,已知每生產(chǎn)一個口罩,甲機(jī)器消耗原料費(fèi)比乙機(jī)器消耗原料費(fèi)多用0.5元.
(1)求乙機(jī)器生產(chǎn)一個口罩需要消耗多少原料費(fèi)?
(2)為了盡快完成這批訂單,該廠決定使用甲、乙機(jī)器一起完成這批訂單,消耗原料費(fèi)合計(jì)不超過39萬元,則乙機(jī)器至少生產(chǎn)多少口罩?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象經(jīng)過點(diǎn),,,已知點(diǎn)的坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)在軸的正半軸,且.
(1)求拋物線的函數(shù)解析式;
(2)若直線從點(diǎn)開始沿軸向下平移,分別交軸、軸于點(diǎn)、.
①當(dāng)時,在線段上否存在點(diǎn),使得點(diǎn),,構(gòu)成等腰直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
②以動直線為對稱軸,線段關(guān)于直線的對稱線段與二次函數(shù)圖象有交點(diǎn),請直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com