【題目】數(shù)學(xué)問(wèn)題:計(jì)算等差數(shù)列5,2,﹣1,﹣4……前n項(xiàng)的和.

問(wèn)題探究:為解決上面的問(wèn)題,我們從最簡(jiǎn)單的問(wèn)題進(jìn)行探究.

探究一:首先我們來(lái)認(rèn)識(shí)什么是等差數(shù)列.

數(shù)學(xué)上,稱按一定順序排列的一列數(shù)為數(shù)列,其中排在第一位的數(shù)稱為第1項(xiàng),用a1表示:排在第二位的數(shù)稱為第2項(xiàng),用a2表示……排在第n位的數(shù)稱為第n項(xiàng),用an表示.一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫等差數(shù)列的公差,公差通常用字母d表示.如:數(shù)列2,46,8,….為等差數(shù)列,其中a12,公差d2

1)已知等差數(shù)列5,2,﹣1,﹣4,…則這個(gè)數(shù)列的公差d   ,第5項(xiàng)是   

2)如果一個(gè)數(shù)列a1a2,a3a4,…是等差數(shù)列,且公差為d,那么根據(jù)定義可得到:

a2a1d,a3a2d,a4a3d,……anan1d,所以a2a1+d,a3a2+da1+2d,a4a1+3d,……:由此可得an   (用a1d的代數(shù)式表示)

3)對(duì)于等差數(shù)列52,﹣1,﹣4,…,an   請(qǐng)判斷﹣2020是否是此等差數(shù)列的某一項(xiàng),若是,請(qǐng)求出是第幾項(xiàng):若不是,說(shuō)明理由.

探究二:二百多年前,數(shù)學(xué)王子高斯用他獨(dú)特的方法快速計(jì)算出1+2+3+4++100的值.我們從這個(gè)算法中受到啟發(fā),用此方法計(jì)算數(shù)列12,3,…,n的前n項(xiàng)和: 可知

4)請(qǐng)你仿照上面的探究方式,解決下面的問(wèn)題:

a1a2,a3,…,an為等差數(shù)列的前n項(xiàng),前n項(xiàng)和Sna1+a2+a3++an.證明:Snna1+

5)計(jì)算:計(jì)算等差數(shù)列5,2,﹣1,﹣4…前n項(xiàng)的和Sn(寫出計(jì)算過(guò)程).

【答案】(1)3,﹣7;(2)ana1+n1d;(3)3n+8;(4)詳見(jiàn)解析;(5

【解析】

1)由題意可知d25=﹣3,則可得答案;

2)根據(jù)題意可得ana1+n1d;

3)由等差數(shù)列5,2,﹣1,﹣4,…,可得公差,再結(jié)合題意即可得到答案;

4)兩個(gè)Sn相加,再相除即可得到答案;

5)由a15,d25=﹣3,結(jié)合題意可得答案.

解:(1d25=﹣3,第5項(xiàng)是:﹣43=﹣7,

故答案為:﹣3,﹣7;

2)由題意得:ana1+n1d,

故答案為:ana1+n1d;

3)等差數(shù)列5,2,﹣1,﹣4,…,

則公差d25=﹣3,

an53n1)=﹣3n+8,

53n1)=﹣2020,

n676,

∴﹣2020是此等差數(shù)列的某一項(xiàng),是第676項(xiàng);

故答案為:﹣3n+8;

4)證明:∵Sna1+a2+a3++an1+an,

Snan+an1+an2++a2+a1

則:①+② 2Snna1+an),

又∵ana1+n1d,

2Snn[a1+a1+n1d],

Snna1+

5)等差數(shù)列52,﹣1,﹣4…,

a15,d25=﹣3,

∴由前n項(xiàng)和的公式Snna1+得:Sn5n+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a是不為1的有理數(shù),我們把 稱為a的差倒數(shù).如:2的差倒數(shù)是=1,1的差倒數(shù)是.已知a1=a2a1的差倒數(shù),a3a2的差倒數(shù),a4a3的差倒數(shù),,依此類推.

1)分別求出a2,a3,a4的值;

2)求a1+a2+a3+…+a3600的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線分別與軸、軸交于兩點(diǎn),與直線交于點(diǎn).

1)點(diǎn)坐標(biāo)為( ),B為( , .

2)在線段上有一點(diǎn),過(guò)點(diǎn)軸的平行線交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,若四邊形是平行四邊形時(shí),求出此時(shí)的值.

3)若點(diǎn)軸正半軸上一點(diǎn),且,則在軸上是否存在一點(diǎn),使得四個(gè)點(diǎn)能構(gòu)成一個(gè)梯形若存在,求出所有符合條件的點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖是由10個(gè)同樣大小棱長(zhǎng)為1的小正方體搭成的幾何體,請(qǐng)分別畫(huà)出它的主視圖、左視圖和俯視圖

2)這個(gè)組合幾何體的表面積為   個(gè)平方單位(包括底面積)

3)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫(huà)的圖一致,則這樣的幾何體最多要   個(gè)小立方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是一種棱長(zhǎng)分別為3cm,4cm,5cm的長(zhǎng)方體積木,現(xiàn)要用若干塊這樣的積木來(lái)搭建大長(zhǎng)方體,如果用3塊來(lái)搭,那么搭成的大長(zhǎng)方體表面積最小是_____cm,如果用4塊來(lái)搭,那么搭成的大長(zhǎng)方體表面積最小是_____cm,如果用12塊來(lái)搭,那么搭成的大長(zhǎng)方體表面積最小是_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,E為垂足,連結(jié)DF,則∠CDF等于(  )

A. 80° B. 70° C. 65° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)“世界那么大,我想去看看”一句話紅遍網(wǎng)絡(luò),騎自行車旅行越來(lái)越受到人們的喜愛(ài),各種品牌的山地自行車相繼投放市場(chǎng),順風(fēng)車行經(jīng)營(yíng)的A型車2015年6月份銷售總額為3.2萬(wàn)元,今年經(jīng)過(guò)改造升級(jí)后A型車每輛銷售價(jià)比去年增加400元,若今年6月份與去年6月份賣出的A型車數(shù)量相同,則今年6月份A型車銷售總額將比去年6月份銷售總額增加25%.

(1)求今年6月份A型車每輛銷售價(jià)多少元?(用列方程的方法解答)

(2)該車行計(jì)劃7月份新進(jìn)一批A型車和B型車共50輛,且B型車的進(jìn)貨數(shù)量不超過(guò)A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?

A、B兩種型號(hào)車的進(jìn)貨和銷售價(jià)格如下表:

A型車

B型車

進(jìn)貨價(jià)格(元/輛)

1100

1400

銷售價(jià)格(元/輛)

今年的銷售價(jià)格

2400

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+3與兩坐標(biāo)軸交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c過(guò)A、B兩點(diǎn),且交x軸的正半軸于點(diǎn)C.

(1)直接寫出A、B兩點(diǎn)的坐標(biāo);

(2)求拋物線的解析式和頂點(diǎn)D的坐標(biāo);

(3)在拋物線上是否存在點(diǎn)P,使得△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線l與x軸所成銳角為30°,且r1=1時(shí),r2018_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案