【題目】如圖,五個正方形面積分別記為S1S2,S3S4,S5,若S12,S33,S55,則S2+S4_____

【答案】13

【解析】

根據(jù)全等三角形的判定定理得到△ABD≌△CEB,根據(jù)全等三角形的性質(zhì)得到ADBC,ABCE,根據(jù)勾股定理得到BD2AD2+AB2AD2+CE2,于是易得結(jié)論.

解:如圖,∵∠DAB=∠BCE=∠DBE90°,

∴∠1+3=∠1+290°,

∴∠3=∠2,

在△ABD與△CEB中,

,

∴△ABD≌△CEBAAS),

ADBC,ABCE

BD2AD2+AB2AD2+CE2,

S2S1+S35

同理,S4S3+S58,

S2+S413,

故答案為:13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在3×3的方格中,點(diǎn)A、B、C、D、E、F都是格點(diǎn),從A、D、E、F四點(diǎn)中任意取一點(diǎn),以所取點(diǎn)及B、C為頂點(diǎn)畫三角形,所畫三角形是直角三角形的概率是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖二次函數(shù) 的圖象經(jīng)過A(-1,0)和B(3,0)兩點(diǎn),且交 軸于點(diǎn)C.

(1)試確定 、 的值;
(2)若點(diǎn)M為此拋物線的頂點(diǎn),求△MBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點(diǎn)A2 019的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了比較市場上甲、乙兩種電子鐘每日走時誤差的情況,從這兩種電子鐘中,各隨機(jī)抽取10臺進(jìn)行測試,兩種電子鐘走時誤差的數(shù)據(jù)如下表(單位:秒):

編號

類型

甲種電子鐘

1

-3

-4

4

2

-2

2

-1

-1

2

乙種電子鐘

4

-3

-1

2

-2

1

-2

2

-2

1

(1) 計(jì)算甲、乙兩種電子鐘走時誤差的平均數(shù);

(2) 計(jì)算甲、乙兩種電子鐘走時誤差的方差;

(3) 根據(jù)經(jīng)驗(yàn),走時穩(wěn)定性較好的電子鐘質(zhì)量更優(yōu).若兩種類型的電子鐘價格相同,請問:你買哪種電子鐘?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,邊長為4,點(diǎn)F在AB邊上,E為射線AD上一點(diǎn),正方形ABCD沿直線EF折疊,點(diǎn)A落在G處,已知點(diǎn)G恰好在以AB為直徑的圓上,則CG的最小值等于( )

A.0
B.2
C.4﹣2
D.2 ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀小強(qiáng)同學(xué)數(shù)學(xué)作業(yè)本上的截圖內(nèi)容并完成任務(wù):

解方程組

解:由①,得,③ 第一步

把③代入①,得.第二步

整理得,.第三步

因?yàn)?/span>可以取任意實(shí)數(shù),所以原方程組有無數(shù)個解 第四步

任務(wù):(1)這種解方程組的方法稱為 ;

2)利用此方法解方程組的過程中所體現(xiàn)的數(shù)學(xué)思想是 ;(請你填寫正確選項(xiàng))

A.轉(zhuǎn)化思想 B.函數(shù)思想 C.?dāng)?shù)形結(jié)合思想 D.公理化思想

3)小強(qiáng)的解法正確嗎? (填正確或不正確),如果不正確,請指出錯在第 步,請選擇恰當(dāng)?shù)慕夥匠探M的方法解該方程組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,BECD于點(diǎn)E,點(diǎn)FAB上,且AF=CE,連接DF

(1)求證:四邊形BEDF是矩形;

(2)連接CF,若CF平分∠BCD,且CE=3BE=4,求矩形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3mBC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學(xué)校需要投入多少資金買草皮?

查看答案和解析>>

同步練習(xí)冊答案