【題目】閱讀小強(qiáng)同學(xué)數(shù)學(xué)作業(yè)本上的截圖內(nèi)容并完成任務(wù):
解方程組
解:由①,得,③ 第一步
把③代入①,得.第二步
整理得,.第三步
因?yàn)?/span>可以取任意實(shí)數(shù),所以原方程組有無數(shù)個(gè)解 第四步
任務(wù):(1)這種解方程組的方法稱為 ;
(2)利用此方法解方程組的過程中所體現(xiàn)的數(shù)學(xué)思想是 ;(請你填寫正確選項(xiàng))
A.轉(zhuǎn)化思想 B.函數(shù)思想 C.?dāng)?shù)形結(jié)合思想 D.公理化思想
(3)小強(qiáng)的解法正確嗎? (填正確或不正確),如果不正確,請指出錯(cuò)在第 步,請選擇恰當(dāng)?shù)慕夥匠探M的方法解該方程組.
【答案】(1)代入法;(2)A;(3)不正確,第二步,見解析.
【解析】
(1)根據(jù)“把③代入①”可以判定出解方程組的方法;
(2)利用解方程組的方法代入消元法可以判斷出所體現(xiàn)的數(shù)學(xué)思想;
(3)用代入消元法解方程組時(shí),不能將轉(zhuǎn)化所得的第三個(gè)方程帶回轉(zhuǎn)化前的原方程中,故可以判斷出解法不正確,進(jìn)而判斷出哪一步錯(cuò)誤;利用加減消元法解出方程組即可.
解:(1)代入法(或“代入消元法”)
由第一步、第二步的解題過程可以看出是代入消元法的方法;
(2)A
∵利用了代入消元法解方程組,∴體現(xiàn)的數(shù)學(xué)思想是轉(zhuǎn)化思想;
(3)不正確;第二步
∵在用代入消元法解方程組的時(shí)候,我們不能將所得到的第三個(gè)方程帶回到轉(zhuǎn)化前的原方程中,
∴這種方法是不正確的;
∵第一步是由①得③,第二步是把③代入①,
∴第二步是錯(cuò)誤的;
正確解法:
①+②,得,解得,,
把代入①,得,
則方程組的解為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2.證明:∠DGA+∠BAC=180°.請完成說明過程.
解:∵EF∥AD,(已知)
∴∠2=∠3.( )
又∵∠1=∠2(已知)
∴∠1=∠3,(等量代換)
∴AB∥ ,( )
∴∠DGA+∠BAC=180°.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD.
(1)如圖1,若∠A=35°,∠C=48°則∠E= °.
(2)如圖2,若∠E=120°,∠C=110°,求∠A+∠F的度數(shù);
(3)如圖3,若∠E=110°,,若GD∥FC,請直接寫出∠AGF與∠GDC的數(shù)量關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,五個(gè)正方形面積分別記為S1,S2,S3,S4,S5,若S1=2,S3=3,S5=5,則S2+S4=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件中,不能判斷△ABC是直角三角形的是( )
A. a:b:c=3:4:5 B. ∠A:∠B:∠C=3:4:5
C. ∠A+∠B=∠C D. a:b:c=1:2:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E,F是對角線BD上的兩點(diǎn),且BF=DE.
求證:(1)AE=CF;
(2)四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長線方向運(yùn)動(dòng)(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時(shí),求AP的長;
(2)當(dāng)運(yùn)動(dòng)過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=2,AC=4.對角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α°,分別交直線BC、AD于點(diǎn)E、F.
(1)當(dāng)α= °,四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)的過程中,從A、B、C、D、E、F中任意4個(gè)點(diǎn)為頂點(diǎn)構(gòu)造四邊形.
①α= °,構(gòu)造的四邊形是菱形;
②若構(gòu)造的四邊形是矩形,求出該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,已知矩形紙片ABCD,AD=2,AB=4,將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB、CD交于點(diǎn)G、F,AE與FG交于點(diǎn)O.
(1)如圖1,求證:A、G、E、F四點(diǎn)圍成的四邊形是菱形;
(2)如圖2,點(diǎn)N是線段BC的中點(diǎn),且ON=OD,求折痕FG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com