【題目】如 圖,△ACB和△E CD都是等腰直角三角形,A,C,D三點(diǎn)在同一直線上,連接BD,AE,并延長(zhǎng)AE交BD于F.
(1)求證:△ACE≌△BCD;
(2)直線AE與BD互相垂直嗎?請(qǐng)證明你的結(jié)論.
【答案】(1)證明見(jiàn)解析;(2)垂直,理由見(jiàn)解析.
【解析】
試題(1)、根據(jù)等腰直角三角形的性質(zhì)得出AC=BC,EC=CD,∠BCD=∠ACB=90°,從而得到三角形全等;(2)、直線AE與BD互相垂直就是證明∠AFD=90°,根據(jù)三角形全等得到∠AEC=∠BDC,結(jié)合∠BEF=∠AEC,從而得出∠BEF=∠BDC,根據(jù)DBC+∠BDC=90°得到∠BEF+∠DBC=90°,從而得到垂直.
試題解析:(1)、∵△ACB和△ECD都是等腰直角三角形,∴AC="BC" EC=CD,
又∵∠BCD=∠ACB=90°,∴△ACE≌△BCD(SAS)
(2)、∵△ACE≌△BCD ∴∠AEC=∠BDC,又∵∠BEF=∠AEC(對(duì)頂角),
∴∠BEF=∠BDC,又∵∠DBC+∠BDC=90°,∴∠BEF+∠DBC=90°,∴AF⊥BD,所以直線AE與BD互相垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面內(nèi)兩點(diǎn).
(1)請(qǐng)用尺規(guī)按下列要求作圖,并保留作圖痕跡;
①連接;
②在線段的延長(zhǎng)線上取點(diǎn),使;
③在線段的延長(zhǎng)線上取點(diǎn),使.
(2)請(qǐng)求出線段與線段長(zhǎng)度之間的數(shù)量關(guān)系.
(3)如果,則的長(zhǎng)度為________,的長(zhǎng)度為________,的長(zhǎng)度為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是根據(jù)某市2014年至2018年工業(yè)生產(chǎn)總值繪制的折線統(tǒng)計(jì)圖,觀察統(tǒng)計(jì)圖獲得以下信息,其中判斷錯(cuò)誤的是( )
A.2014年至2018年工業(yè)生產(chǎn)總值逐年增加
B.2018年的工業(yè)生產(chǎn)總值比前一年增加了億元
C.2016年與2017年每一年與前一年比,其增長(zhǎng)額相同
D.2015年至2018年,每一年與前一年比,2018年的增長(zhǎng)率最大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長(zhǎng),分別至點(diǎn)E和點(diǎn)F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,直接寫(xiě)出菱形AECF的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=DB,∠1=∠2,請(qǐng)問(wèn)添加下面哪個(gè)條件不能判斷△ABC≌△DBE的是( 。
A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某九年級(jí)制學(xué)校圍繞“每天30分鐘的大課間,你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫(xiě)一項(xiàng))”的問(wèn)題,對(duì)在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)該校對(duì)多少學(xué)生進(jìn)行了抽樣調(diào)查?
(2)本次抽樣調(diào)查中,最喜歡籃球活動(dòng)的有多少?占被調(diào)查人數(shù)的百分比是多少?
(3)若該校九年級(jí)共有200名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上點(diǎn)與點(diǎn)之間的距的距離為個(gè)單位長(zhǎng)度,點(diǎn)在原點(diǎn)的左側(cè),到原點(diǎn)的距離為個(gè)單位長(zhǎng)度,點(diǎn)在點(diǎn)的右側(cè),點(diǎn)表示的數(shù)與點(diǎn)表示的數(shù)互為相反數(shù),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)移動(dòng),設(shè)移動(dòng)時(shí)間為秒.
(1)點(diǎn)表示的數(shù)為 ,點(diǎn)表示的數(shù)為 ,點(diǎn)表示的數(shù)為 .
(2)用含的代數(shù)式分別表示點(diǎn)到點(diǎn)和點(diǎn)的距離: , .
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)到達(dá)點(diǎn)后,立即以同樣的速度返回點(diǎn),在點(diǎn)開(kāi)始運(yùn)動(dòng)后,當(dāng)兩點(diǎn)之間的距離為個(gè)單位長(zhǎng)度時(shí),求此時(shí)點(diǎn)表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,按A→B→C→D的順序在邊上勻速運(yùn)動(dòng),設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖(2)所示,當(dāng)P運(yùn)動(dòng)到BC中點(diǎn)時(shí),△PAD的面積為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以Rt△ABC的斜邊BC為一邊在△ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO,如果AB=3,AO=,那么AC的長(zhǎng)等于( )
A. 7 B. 8 C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com