【題目】如圖,在中,,.將繞點逆時針旋轉(zhuǎn)得到,則圖中陰影部分的面積是______

【答案】

【解析】

ABB′C′交于點D,根據(jù)三角函數(shù)求出AC=1,∠BAC=60°,即可得到AB=2,∠ABC=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到AC′=AC=1,AB′=AB=2B′C′=BC=,∠B′AB=30°,∠C′AB′=CAB=60°,則∠C′AD=C′AB′BAB′=30°,接著在RtAC′D中,利用∠C′AD=30°可得C′D,從而求出 B′D,然后根據(jù)三角形面積公式、扇形面積公式進行計算即可.

解:∵∠C=90°,

∴∠BAC=60°,AC=1

∴∠ABC=30°,即AB=2AC=2,

ABB′C′交于點D


RtABC繞點A逆時針旋轉(zhuǎn)30°后得到AB′C′,
AC′=AC=1AB′=AB=2,B′C′=BC=,∠B′AB=30°,∠C′AB′=CAB=60°,
∴∠C′AD=C′AB′-BAB′=60°-30°=30°,
RtAC′D中,∵∠C′AD=30°,
C′D=,
B′D=B′C′-C′D=,
∴圖中陰影部分的面積=S扇形BAB′-SADB′
故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個批發(fā)店銷售同一種蘋果,在甲批發(fā)店,不論一次購買數(shù)量是多少,價格均為6/.在乙批發(fā)店,一次購買數(shù)量不超過時,價格為7/;一次購買數(shù)量超過時,其中有的價格仍為7/,超過部分的價格為5/.設(shè)小王在同一個批發(fā)店一次購買蘋果的數(shù)量為

(Ⅰ)根據(jù)題意填空:

①若一次購買數(shù)量為時,在甲批發(fā)店的花費為________元,在乙批發(fā)店的花費為________元;

②若一次購買數(shù)量為時,在甲批發(fā)店的花費為________元,在乙批發(fā)店的花費為________元;

(Ⅱ)設(shè)在甲批發(fā)店花費元,在乙批發(fā)店花費元,分別求,關(guān)于的函數(shù)解析式;

(Ⅲ)根據(jù)題意填空:

①若小王在甲批發(fā)店和在乙批發(fā)店一次購買蘋果的數(shù)量相同,且花費相同,則他在同一個批發(fā)店一次購買蘋果的數(shù)量為_________;

②若小王在同一個批發(fā)店一次購買蘋果的數(shù)量為,則他在甲、乙兩個批發(fā)店中的________批發(fā)店購買花費少;

③若小王在同一個批發(fā)店一次購買蘋果花費了260元,則他在甲、乙兩個批發(fā)店中的_________批發(fā)店購買數(shù)量多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】齊齊哈爾市教育局想知道某校學(xué)生對扎龍自然保護區(qū)的了解程度,在該校隨機抽取了部分學(xué)生進行問卷,問卷有以下四個選項:A.十分了解;B.了解較多:C.了解較少:D.不了解(要求:每名被調(diào)查的學(xué)生必選且只能選擇一項).現(xiàn)將調(diào)查的結(jié)果繪制成兩幅不完整的統(tǒng)計圖.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)本次被抽取的學(xué)生共有_______名;

2)請補全條形圖;

3)扇形圖中的選項“C.了解較少”部分所占扇形的圓心角的大小為_______°;

4)若該校共有名學(xué)生,請你根據(jù)上述調(diào)查結(jié)果估計該校對于扎龍自然保護區(qū)“十分了解”和“了解較多”的學(xué)生共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖像如圖所示,則下列結(jié)論正確的個數(shù)有(

c0;②b24ac0;③ abc0;④當(dāng)x>-1時,yx的增大而減小.

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,,是射線上的點,連接,將沿直線翻折得

1)如圖①,點恰好在上,求證:

2)如圖②,點在矩形內(nèi),連接,若,求的面積;

3)若以點、、為頂點的三角形是直角三角形,則的長為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,點軸正半軸上,且,以為邊在第一象限內(nèi)作正方形,且雙曲線經(jīng)過點

1)求的值;

2)將正方形沿軸負(fù)方向平移得到正方形,當(dāng)點恰好落在雙曲線上時,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,ABAC,BD為⊙O的直徑,過點AAEBD于點E,延長BDAC延長線于點F

1)若AE4,AB5,求⊙O的半徑;

2)若BD2DF,求sinACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠B=90o,以AB上的一點O為圓心,以OA為半徑的圓交AC于點D,交AB于點E

1)求證:AC·AD=AB·AE;

2)如果BD⊙O的切線,D是切點,EOB的中點,當(dāng)BC=2時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知C為線段AB中點,∠ACMαQ為線段BC上一動點(不與點B重合),點P在射線CM上,連接PA,PQ,記BQkCP

1)若α60°,k1

①如圖1,當(dāng)QBC中點時,求∠PAC的度數(shù);

②直接寫出PA、PQ的數(shù)量關(guān)系;

2)如圖2,當(dāng)α45°時.探究是否存在常數(shù)k,使得②中的結(jié)論仍成立?若存在,寫出k的值并證明;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案