【題目】如圖已知等邊,頂點(diǎn)在雙曲線上,點(diǎn)的坐標(biāo)為.過作交雙曲線于點(diǎn),過作交x軸于點(diǎn)得到第二個等邊;過作交雙曲線于點(diǎn),過作交x軸于點(diǎn),得到第三個等邊;以此類推,…,則點(diǎn)的坐標(biāo)為________.
【答案】
【解析】
根據(jù)等邊三角形的性質(zhì)以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征分別求出B2、B3、B4的坐標(biāo),得出規(guī)律,進(jìn)而求出點(diǎn)B16的坐標(biāo).
如圖,
作A2C⊥x軸于點(diǎn)C,設(shè)B1C=a,則A2C=a,
OC=OB1+B1C=2+a,A2(2+a,a).
∵點(diǎn)A2在雙曲線y=(x>0)上,
∴(2+a)a=,
解得a=-1,或a=--1(舍去),
∴OB2=OB1+2B1C=2+2-2=2,
∴點(diǎn)B2的坐標(biāo)為(2,0);
作A3D⊥x軸于點(diǎn)D,設(shè)B2D=b,則A3D=b,
OD=OB2+B2D=2+b,A3(2+b,b).
∵點(diǎn)A3在雙曲線y=(x>0)上,
∴(2+b)b=,
解得b=-+,或b=--(舍去),
∴OB3=OB2+2B2D=2-2+2=2,
∴點(diǎn)B3的坐標(biāo)為(2,0);
同理可得點(diǎn)B4的坐標(biāo)為(2,0)即(4,0);
以此類推…,
∴點(diǎn)Bn的坐標(biāo)為(2,0),
∴點(diǎn)B16的坐標(biāo)為(2,0),即(8,0)
故答案為(8,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:(用適當(dāng)?shù)姆椒ń夥匠?/span>)
(1)解方程:x2﹣3x+2=0.
(2)(2x-3)+2x(2x-3)=0
(3)3x2=2-5x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=30°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1.
(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長線時(shí),求∠CC1A1的度數(shù);
(2)已知AB=6,BC=8,
①如圖2,連接AA1,CC1,若△CBC1的面積為16,求△ABA1的面積;
②如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)的過程中,點(diǎn)P的對應(yīng)是點(diǎn)P1,直接寫出線段EP1長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息:
請結(jié)合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進(jìn)貨單價(jià);
(2)已知甲、乙兩種商品的零售單價(jià)分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調(diào)查發(fā)現(xiàn),甲種商品零售單價(jià)每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價(jià)下降m(m>0)元,在不考慮其他因素的條件下,求當(dāng)m為何值時(shí),商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價(jià)﹣進(jìn)貨單價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在⊙O中,AB是直徑,AC是弦,OE⊥AC于點(diǎn)E,過點(diǎn)C作直線FC,使∠FCA=∠AOE,交AB的延長線于點(diǎn)D.
(1)求證:FD是⊙O的切線;
(2)設(shè)OC與BE相交于點(diǎn)G,若OG=2,求⊙O半徑的長;
(3)在(2)的條件下,當(dāng)OE=3時(shí),求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長交AB的延長線于點(diǎn)F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=8,求圖中陰影部分的面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P(-3,m)和Q(1,m)是拋物線y=2x2+bx+1上的兩點(diǎn).
(1)求b的值;
(2)判斷關(guān)于x的一元二次方程2x2+bx+1=0是否有實(shí)數(shù)根,若有,求出它的實(shí)數(shù)根;若沒有,請說明理由;
(3)將拋物線y=2x2+bx+1的圖象向上平移k(k是正整數(shù))個單位,使平移后的圖象與x軸無交點(diǎn),求k的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=30°,點(diǎn)B1在邊OM上,且OB1=3,過點(diǎn)B1作B1A1⊥OM交ON于點(diǎn)A1,以A1B1為邊在A1B1右側(cè)作等邊三角形A1B1C1;過點(diǎn)C1作OM的垂線分別交OM、ON于點(diǎn)B2、A2,以A2B2為邊在A2B2的右側(cè)作等邊三角形A2B2C2;過點(diǎn)C2作OM的垂線分別交OM、ON于點(diǎn)B3、A3,以A3B3為邊在A3B3的右側(cè)作等邊三角形A3B3C3,…;按此規(guī)律進(jìn)行下去,則△An﹣1AnCn﹣1的高為______.(用含正整數(shù)n的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com