精英家教網 > 初中數學 > 題目詳情

【題目】如圖,射線上有三點、,滿足,,,點從點出發(fā),沿方向以的速度勻速運動,點從點出發(fā)在線段上向點勻速運動,兩點同時出發(fā),當點運動到點時,點、停止運動.

1)若點運動速度為,經過多長時間、兩點相遇?

2)當時,點運動到的位置恰好是線段的中點,求點的運動速度;

3)設運動時間為,當點運動到線段上時,分別取的中點、,則____________.

【答案】(1)經過,兩點相遇(2)答案不唯一,具體見解析(3)

【解析】

1)設經過t秒時間P、Q兩點相遇,根據OP+CQ=OA+AB+AC列出方程即可解決問題;

2)分兩種情形求解即可;

3)用t表示AP、EF的長,代入化簡即可解決問題;

1)設運動時間為,則,;所以經過,兩點相遇

2)當點在線段上時,如下圖,

AP+PB=60,

∴AP=40,OP=50,

∴P用時50s,

∵QOB中點,

∴CQ=50,

的運動速度為

當點在線段的延長線上時,如下圖,

AP=2PB,

∴AP=120,OP=140,

∴P用時140s,

∵QOB中點,

∴CQ=50,

的運動速度為

3)如下圖,

由題可知,OC=90,

AP=x-20,

EF=OF-OE=OF-OP=50-x,

90-x-20-2(50-x)=10

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖7所示,點、軸上,且,分別過點、軸的平行線,與反比例函數的圖象分別交于點、、,分別過點 軸的平行線,分別與軸交于點 ,連接 ,那么圖中陰影部分的面積之和為___________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,FBD上,BE=DF.

(1)求證:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,由6相同的小正方體組合成的簡單幾何體.

(1)請在方格紙中分別畫出幾何體的主視圖、左視圖和俯視圖;

(2)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的主視圖和俯視圖不變,那么最多可以再添加 個小正方體.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在 RtABC,ACB=90°,AC=BC,分別過A、B作直線的垂線,垂足分別為M、N

(1)求證:AMC≌△CNB

(2)若AM=3,BN=5,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線過點, 為線段OA上一個動點(點M與點A不重合),過點M作垂直于x軸的直線與直線AB和拋物線分別交于點PN

(1)求直線AB的解析式和拋物線的解析式;

(2)如果點PMN的中點,那么求此時點N的坐標;

(3)如果以B,PN為頂點的三角形與相似,求點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在數軸上有三點A、BC,請根據圖回答下列問題:

1)若將點B向左平移3個單位后,則A、B、C這三個點所表示的數誰最?是多少?

2)若將點A向右平移4個單位后,則A、BC這三個點所表示的數誰最大?最大的數比最小的數大多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是一張平行四邊形紙片ABCD,要求利用所學知識作出一個菱形,甲、乙兩位同學的作法分別如下:

甲:連接AC,作AC的中垂線交AD、BCEF,則四邊形AFCE是菱形.

乙:分別作的平分線AE、BF,分別交BC于點E,交AD于點F,則四邊形ABEF是菱形.

對于甲、乙兩人的作法,可判斷( )

A.甲正確,乙錯誤B.甲錯誤,乙正確

C.甲、乙均正確D.甲、乙均錯誤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的布袋中裝有相同的三個小球,其上面分別標注

數字12、3、,現從中任意摸出一個小球,將其上面的數字作為點M的橫坐標;將球放回

袋中攪勻,再從中任意摸出一個小球,將其上面的數字作為點M的縱坐標.

1)寫出點M坐標的所有可能的結果;

2)求點M在直線yx上的概率;

3)求點M的橫坐標與縱坐標之和是偶數的概率.

查看答案和解析>>

同步練習冊答案