(2006•株洲)如圖甲,四邊形ABCD是等腰梯形,AB∥DC.由4個這樣的等腰梯形可以拼出圖乙所示的平行四邊形.
(1)求梯形ABCD四個內(nèi)角的度數(shù);
(2)試探梯形ABCD四條邊之間存在的數(shù)量關(guān)系,并說明理由.

【答案】分析:(1)根據(jù)四邊形內(nèi)角和定理即可求解.
(2)本題要依靠輔助線的幫助,連接MN,求出∠FMN=∠FNM,根據(jù)角與邊的關(guān)系可以求腰長.
解答:解:(1)如圖∠1=∠2=∠3,∠1+∠2+∠3=360°,即∠1=120°,所以圖甲中梯形的上底角均為120°,下底角均為180°-120°=60°.

(2)∵EF既是梯形的腰,又是梯形的上底,
∴梯形的腰等于上底,即MF=FN=EF,
連接MN,
∵∠3=120°,MF=FN,
∴∠FMN=∠FNM===30°,
∴∠HMN=30°,∠HNM=90°,
∴NH=MH,因此梯形的上底等于下底長的一半,且等于腰長.
點評:本題綜合考查了等腰梯形的性質(zhì)以及四邊形內(nèi)角和定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年九年級學(xué)業(yè)考試數(shù)學(xué)科適應(yīng)性測試卷(解析版) 題型:解答題

(2006•株洲)如圖:已知拋物線y=x2+x-4與x軸交于A,B兩點,與y軸交于點C,O為坐標(biāo)原點.
(1)求A,B,C三點的坐標(biāo);
(2)已知矩形DEFG的一條邊DE在AB上,頂點F,G分別在線段BC,AC上,設(shè)OD=m,矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系式,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時,連接對角線DF并延長至點M,使FM=DF.試探究此時點M是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2006•株洲)如圖:已知拋物線y=x2+x-4與x軸交于A,B兩點,與y軸交于點C,O為坐標(biāo)原點.
(1)求A,B,C三點的坐標(biāo);
(2)已知矩形DEFG的一條邊DE在AB上,頂點F,G分別在線段BC,AC上,設(shè)OD=m,矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系式,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時,連接對角線DF并延長至點M,使FM=DF.試探究此時點M是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(08)(解析版) 題型:解答題

(2006•株洲)如圖,在直角坐標(biāo)系中,點O′的坐標(biāo)為(-2,0),⊙O′與x軸相交于原點O和點A,又B,C兩點的坐標(biāo)分別為(0,b),(1,0).
(1)當(dāng)b=3時,求經(jīng)過B,C兩點的直線的解析式;
(2)當(dāng)B點在y軸上運動時,直線BC與⊙O′有哪幾種位置關(guān)系?并求每種位置關(guān)系時b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年貴州省六盤水市盤縣響水中學(xué)中考數(shù)學(xué)模擬密卷(一)(解析版) 題型:解答題

(2006•株洲)如圖:已知拋物線y=x2+x-4與x軸交于A,B兩點,與y軸交于點C,O為坐標(biāo)原點.
(1)求A,B,C三點的坐標(biāo);
(2)已知矩形DEFG的一條邊DE在AB上,頂點F,G分別在線段BC,AC上,設(shè)OD=m,矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系式,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時,連接對角線DF并延長至點M,使FM=DF.試探究此時點M是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖南省株洲市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•株洲)如圖,在直角坐標(biāo)系中,點O′的坐標(biāo)為(-2,0),⊙O′與x軸相交于原點O和點A,又B,C兩點的坐標(biāo)分別為(0,b),(1,0).
(1)當(dāng)b=3時,求經(jīng)過B,C兩點的直線的解析式;
(2)當(dāng)B點在y軸上運動時,直線BC與⊙O′有哪幾種位置關(guān)系?并求每種位置關(guān)系時b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案