【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為1,l2,l3之間的距離為2,則AC的長(zhǎng)是( )
A. B. C. 5 D.
【答案】D
【解析】
過(guò)A作AD⊥l3于D,過(guò)C作CE⊥l3于E,根據(jù)AAS可證明△DAB≌△EBC,可求出BE=AD=2,進(jìn)而可求出CE的長(zhǎng),根據(jù)勾股定理可求出BC的長(zhǎng),進(jìn)而求出AC的長(zhǎng)即可.
過(guò)A作AD⊥l3于D,過(guò)C作CE⊥l3于E,
∵AD⊥l3,CE⊥l3,
∴∠ADB=∠ABC=∠CEB=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△ADB和△CBE中,,
∴△DAB≌△EBC,
∴AD=BE=2,
∵CE=3,
∴BC===,
∵AB=BC,∠ABC=90°,
∴AC=BC=
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列兩圖的網(wǎng)格都是由邊長(zhǎng)為1的小正方形組成,我們把頂點(diǎn)在正方形頂點(diǎn)的三角形稱為格點(diǎn)三角形.
(1)求圖①中格點(diǎn)△ABC的周長(zhǎng)和面積;
(2)在圖②中畫出格點(diǎn)△DEF,使它的邊長(zhǎng)滿足DE=2,DF=5,EF=,并求出△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE=時(shí),四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一組數(shù)據(jù)6,3,4,7,6,3,5,6,求:
(1)這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);
(2)這組數(shù)據(jù)的方差和標(biāo)準(zhǔn)差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,∠C=45°,AD是BC邊上的高,∠ABC的平分線BE交AD于點(diǎn)F,則圖中共有等腰三角形( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在△ABC中,BD,CD分別平分∠ABC,∠ACB,過(guò)點(diǎn)D作EF∥BC交AB,AC于點(diǎn)E,F(xiàn),試說(shuō)明BE+CF=EF的理由;
(2)如圖2,BD,CD分別平分∠ABC,∠ACG,過(guò)點(diǎn)D作EF∥BC交AB,AC于點(diǎn)E,F(xiàn),則BE,CF,EF有怎樣的數(shù)量關(guān)系?并說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC>AB,AD平分∠BAC,點(diǎn)D到點(diǎn)B與點(diǎn)C的距離相等,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E.
(1)求證:BE=CE;
(2)請(qǐng)直接寫出∠ABC,∠ACB,∠ADE三者之間的數(shù)量關(guān)系;
(3)若∠ACB=40°,∠ADE=20°,求∠DCB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,D是AC邊上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長(zhǎng)是9.其中正確的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,連結(jié)CE交AD于點(diǎn)F,連結(jié)BD交CE于點(diǎn)G,連結(jié)BE.下列結(jié)論:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四邊形BCDE=BD·CE;⑤BC2+DE2=BE2+CD2.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com