【題目】在△ABC中,∠B和∠C的平分線交于點I,邊AB和AC的垂直平分線交于點O,若∠BIC=90°+θ,則∠BOC=( )
A.90°﹣θB.2θC.180°﹣θD.以上答案都不對
【答案】B
【解析】
根據(jù)角平分線的性質(zhì)可得∠A=θ,再根據(jù)線段垂直平分線的性質(zhì)和三角形內(nèi)角和定理即可推出∠BOC.
解:如圖,
∵∠B和∠C的平分線交于點I,
∴∠IBC=∠ABC,∠ICB=∠ACB,
∠BIC=180°﹣(∠IBC+∠ICB)
=180°﹣(∠ABC+∠ACB)
=180°﹣(180°﹣∠BAC)
=180°﹣90°+∠BAC
=90°+∠BAC,
∵∠BIC=90°+θ,
∴∠BAC=θ.
∵AB和AC的垂直平分線交于點O,
∴OA=OB=OC
∴∠1=∠OBA,∠2=∠OCA,
∴∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠ABC﹣∠1+∠ACB﹣∠2)
=180°﹣(180°﹣∠BAC﹣∠1﹣∠2)
=∠BAC+∠1+∠2
=2∠BAC
=2θ.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,∠ADC的平分線交直線BC于點E、交AB的延長線于點F,連接AC.
(1)如圖1,若∠ADC=90°,G是EF的中點,連接AG、CG.
①求證:BE=BF;
②請判斷△AGC的形狀,并說明理由.
(2)如圖2,若∠ADC=60°,將線段FB繞點F順時針旋轉(zhuǎn)60°至FG,連接AG、CG,判斷△AGC的形狀.(直接寫出結(jié)論不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EF∥BC交AB、AC于E、F.
(1)圖①中有幾個等腰三角形?猜想:EF與BE、CF之間有怎樣的關(guān)系.
(2)如圖②,若AB≠AC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問中EF與BE、CF間的關(guān)系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OE∥BC交AB于E,交AC于F.這時圖中還有等腰三角形嗎?EF與BE、CF關(guān)系又如何?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程(組)解應用題:
汾河古稱“汾”,又稱汾水,是山西最大的河流,被山西人稱為“母親河”,對山西省的歷史文化有著深遠的影響.為打造“一川清水、兩岸錦繡”的生態(tài)環(huán)境,現(xiàn)將一段長為的汾河兩岸綠化任務交由甲、乙兩個工程隊先后接力完成.甲工程隊每天綠化,乙工程隊每天綠化,共用時天.
根據(jù)以上信息,小敏和小穎由自己的設想方案分別列出了尚不完整的方程組:
小敏:
小穎:
(1)請你在方框中補全小敏和小穎所列的方程組;
(2)根據(jù)小敏和小穎所列的方程組,分別指出未知數(shù),表示的實際意義:
小敏:表示_____________,表示____________;
小穎:表示____________,表示______________;
(3)請你選擇一種方案,求甲、乙兩工程隊分別綠化河岸多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)在一個不透明的紙箱里裝有紅、黃、藍三種顏色的小球,它們除顏色外完全相同,其中紅球有2個,黃球有1個,藍球有1個.現(xiàn)有一張電影票,小明和小亮決定通過摸球游戲定輸贏(贏的一方得電影票).游戲規(guī)則是:兩人各摸1次球,先由小明從紙箱里隨機摸出1個球,記錄顏色后放回,將小球搖勻,再由小亮隨機摸出1個球并記錄顏色.若兩人摸到的球顏色相同,則小明贏,否則小亮贏.這個游戲規(guī)則對雙方公平嗎?請你利用樹狀圖或列表法說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在正方形網(wǎng)格上有6個三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②~⑥中與①相似的是( )
A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(0,12),B(16,0),動點P從點A開始在線段AO上以每秒1個單位的速度向點O移動,同時點Q從點B開始在BA上以每秒2個單位的速度向點A移動,設點P、Q移動的時間為t秒.
⑴求直線AB的解析式;
⑵求t為何值時,△APQ與△AOB相似?
⑶當t為何值時,△APQ的面積為個平方單位?
⑷當t為何值時,△APQ的面積最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1.0,1.21,1.44,正放置的四個正方形的面積為S1、S2、S3、S4,則S1+S2+S3+S4= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場出售一批進價為2元的賀卡,在營運中發(fā)現(xiàn)此商品的日銷價x(單位:元)與銷售量y(單位:張)之間有如下關(guān)系:
x/元 | 3 | 4 | 5 | 6 |
y/張 | 20 | 15 | 12 | 10 |
(1)猜測并確定y與x的函數(shù)關(guān)系式.
(2)當日銷售單價為10元時,賀卡的日銷售量是多少張?
(3)設此卡的利潤為W元,試求出W與x之間的函數(shù)關(guān)系式,若物價部門規(guī)定此卡的銷售單價不能超過10元,試求出當日銷售單價為多少元時,每天獲得的利潤最大并求出最大的利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com