【題目】如圖,在平面直角坐標系中,四邊形OABC為菱形,點C的坐標為(8,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設(shè)直線l與菱形OABC的兩邊分別交于點M、N(點M在點N的上方).
(1)求A、B兩點的坐標;
(2)設(shè)△OMN的面積為S,直線l運動時間為t秒(0≤t≤12),求S與t的函數(shù)表達式;
(3)在(2)的條件下,t為何值時,S最大?并求出S的最大值.
【答案】(1)A(4,4),B(12,4);(2)①0≤t≤4時,S=t2;②當4<t≤8時,S=2t;③當8<t≤12時,S=﹣t2+6t;(3)當t=8時,S最大=16
【解析】
(1)過點A作AD⊥OC于D,根據(jù)菱形的性質(zhì)可得OA=AB=BC=CO=8,然后根據(jù)銳角三角函數(shù)即可求出OD和AD,從而求出點A和點B的坐標;
(2)根據(jù)直線l與菱形相交的情況分類討論,分別畫出對應(yīng)的圖形,然后根據(jù)銳角三角函數(shù)和三角形的面積公式計算即可;
(3)利用一次函數(shù)增減性和二次函數(shù)的增減性分別求出(2)中S的最值,最后取S的最大值即可.
解:(1)過點A作AD⊥OC于D,
∵四邊形OABC為菱形,點C的坐標為(8,0),
∴OA=AB=BC=CO=8.
∵∠AOC=60°,
∴OD=OA·cos∠AOD=4,AD=OA·sin∠AOD=4.
∴A(4,4),B(12,4);
(2)直線l從y軸出發(fā),沿x軸正方向運動與菱形OABC的兩邊相交有三種情況:
①0≤t≤4時,直線l與OA、OC兩邊相交,(如圖①).
∵MN⊥OC,
∴ON=t.
∴MN=ONtan60°=t.
∴S=ONMN=t2;
②當4<t≤8時,直線l與AB、OC兩邊相交,(如圖②).
S=ONMN=×t×4=2t;
③當8<t≤12時,直線l與AB、BC兩邊相交,(如圖③).
設(shè)直線l與x軸交于點H.
∵MN=4﹣(t﹣8)=12﹣t,
∴S=OHMN=×t×(12﹣t)
=﹣t2+6t;
(3)由(2)知,當0≤t≤4時,S=t2中,>0,對稱軸為直線t=0
∴當t>0時,S隨t的增大而增大
∴S最大=×42=8,
當4<t≤8時,S=2t中,2>0
∴S隨t的增大而增大
∴S最大=2×8=16,
當8<t≤12時,S=﹣t2+6t=﹣(t﹣6)2+18中,﹣<0,對稱軸為直線t=6
∴當t>6時,S隨t的增大而減小
∴當8<t≤12時,S<16
綜上所述,當t=8時,S最大=16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,BC∥OA,BC=3,OA=6,AB=3
(1)直接寫出點B的坐標
(2)已知D.E分別為線段OC.OB上的點,OD=5,OE=2BE,直線DE交x軸于點F,求直線DE的解析式
(3)在(2)的條件下,點M是直線DE上的一點,在x軸上方是否存在另一個點N,使以O.D.M.N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,過O點作OP⊥AB,交弦AC于點D,交⊙O于點E,且使∠PCA=∠ABC.
(1)求證:PC是⊙O的切線;
(2)若∠P=60°,PC=2,求PE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中,,求作的外心,以下是甲、乙兩同學(xué)的作法:對于兩人的作法:
甲:如圖1,(1)作的垂直平分線;
(2)作的垂直平分線;
(3),交于點,則點即為所求.
乙:如圖2,(1)作的平分線;
(2)作的垂直平分線;
(3),交于點,則點即為所求.
對于兩人的作法,正確的是( )
A.兩人都對B.兩人都不對C.甲對,乙不對D.甲不對,乙對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一副直角三角板如圖放置,其中BC=6,EF=8,把30°的三角板向右平移,使頂點B落在45°的三角板的斜邊DF上,則兩個三角板重疊部分(陰影部分)的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小花在一次放風(fēng)箏活動中某時段的示意圖,她在A處時的風(fēng)箏線(整個過程中風(fēng)箏線近似地看作直線)與水平線構(gòu)成30°角,線段AA1表示小花身高1.5米,當她從點A跑動9米到達點B處時,風(fēng)箏線與水平線構(gòu)成45°角,此時風(fēng)箏到達點E處,風(fēng)箏的水平移動距離CF=10米,這一過程中風(fēng)箏線的長度保持不變,求風(fēng)箏原來的高度C1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點,與y軸交于C、D兩點,點E為⊙G上一動點,CF⊥AE于F.當點E從點B出發(fā)順時針運動到點D時,點F所經(jīng)過的路徑長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象交x軸于點A,B(點A在點B的左側(cè)).
(1)求點A,B的坐標,并根據(jù)該函數(shù)圖象寫出y≥0時x的取值范圍;
(2)把點B向上平移m個單位得點B1.若點B1向左平移n個單位,將與該二次函數(shù)圖象上的點B2重合;若點B1向左平移(n+6)個單位,將與該二次函數(shù)圖象上的點B3重合.已知m>0,n>0,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O 中,AB 是直徑,CD 是弦,AB⊥CD 于點 E,BF∥OC,連接 BC 和 CF ,CF 交 AB 于點 G.
(1)求證:∠OCF=∠BCD ;
(2)若 CD=8,tan∠OCF=,求⊙O 半徑的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com